Model-based parameter identification of comprehensive friction behaviors for giant forging press

Yi-bo Li , Qing Pan , Ming-hui Huang

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (9) : 2359 -2365.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (9) : 2359 -2365. DOI: 10.1007/s11771-013-1744-z
Article

Model-based parameter identification of comprehensive friction behaviors for giant forging press

Author information +
History +
PDF

Abstract

A new experimental apparatus was set up to investigate the actual friction characteristics on the basis of speed control of the serve system. A modified friction model was proposed due to real time varying deformation resistance. The approach to identify the parameters of comprehensive friction behaviors based on the modified model was proposed and applied to the forging press. The impacts on parameters which the external load had were also investigated. The results show that friction force decreases with velocity in the low velocity regime whereas the friction force increases with the velocity in the high velocity regime under no external load. It is also shown that the Coulomb friction force, the maximum static friction force and the vicious friction coefficient change linearly with the external load taking the velocity at which the magnitude of the steady state friction force becomes minimum as the critical velocity.

Keywords

friction / forging press / modified model / LuGre model / parameter identification

Cite this article

Download citation ▾
Yi-bo Li, Qing Pan, Ming-hui Huang. Model-based parameter identification of comprehensive friction behaviors for giant forging press. Journal of Central South University, 2013, 20(9): 2359-2365 DOI:10.1007/s11771-013-1744-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LuX-j, HuangM-hui. System-decomposition-based multilevel control for hydraulic press machine [J]. IEEE Transactions on Industrial Electronics, 2012, 59(4): 1980-1987

[2]

ChenM, HuangM-h, ZhouY-c, ZhanL-hua. Synchronism control system of heavy hydraulic press [C]. International Conference on Measuring Technology and Mechatronics Automation. Zhangjiajie, China, 200917-19

[3]

DongW-p, ChenJun. 3D FEA simulation of 4A11 piston skirt isothermal forging process [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(5): 1196-1200

[4]

WuS-l, LiuC-fang. Friction dynamic compensation for electric-hydraulic servo systems based on lugre friction model [J]. Journal of Mechatronic & Hydraulic Engineering, 2003, 2: 67-69

[5]

MartonL, FodorS, SepehriN. A practical method for friction identification in hydraulic actuators [J]. Mechatronics, 2011, 21(1): 350-356

[6]

ShangW-w, CongS, ZhangY-xin. Nonlinear friction compensation of a 2-DOF planar parallel manipulator [J]. Mechatronics, 2008, 18(7): 340-346

[7]

ReyesF, KellyR. Experimental evaluation of model-based controllers on a direct drive robot arm [J]. Mechatronics, 2001, 11(3): 267-282

[8]

MorenoJ, KellyR, CampaR. Manipulator velocity control using friction compensation [J]. Proceedings of IEE Control Theory and Applications, 2003, 150(2): 1189-1195

[9]

MorenoJ, KellyR, CampaR. Pose regulation of robot manipulators with dynamic friction compensation [C]. Proceedings of the 44th IEEE Conference on Decision and Control, 2005Seville, SpainIEEE4368-4372

[10]

KhayatiK, BigrasP, DessaintL A. LuGre model-based friction compensation and positioning control for a pneumatic actuator using multi-objective output-feedback control via LMI optimization [J]. Mechatronics, 2009, 19(4): 535-547

[11]

JamaludinZ, van BrusselH, SweversJ. Friction compensation of an XY feed table using friction-model-based feedforward and an inverse-model-based disturbance observer [J]. IEEE Transactions on Industrial Electronics, 2009, 56(10): 3848-3853

[12]

Canudas De WitC. Comments on a new model for control of systems with friction [J]. IEEE Transactions on Automatic Control, 1998, 43(8): 1189-1190

[13]

Canudas De WitC, LischinskyP. Adaptive friction compensation with partially known dynamic friction model [J]. International Journal of Adaptive Control and Signal Processing, 1997, 11(1): 65-80

[14]

Canudas De WitC, OlssonH, AstromK J, LischinskyP. A new model for control of systems with friction [J]. Automat Contr IEEE Trans, 1995, 40(3): 419-425

[15]

AstromK J, Canudas De WitC. Revisiting the lugre model [J]. IEEE Control Systems Magazine, 2008, 28(6): 101-114

[16]

Bo TranX, HafizahN, YanadaHModeling of dynamic friction behavior of hydraulic cylinders [J], 2012, 22(1): 65-75

[17]

YanadaH, TakahashiK, MatsuiA. Identification of dynamic parameters of modified lugre model and application to hydraulic actuator [J]. Trans Jpn Fluid Power Syst Soc, 2009, 40(4): 57-64

[18]

HidekiY, SekikawaY. Modeling of dynamic behaviors of friction [J]. Mechatronics, 2008, 18(7): 330-339

[19]

RizosD D, FassoisS D. Friction identification based upon the lugre and maxwell slip models [J]. IEEE Transactions on Control Systems Technology, 2009, 17(1): 153-160

[20]

VakilM, FotouhiR, NikiforukP N. Energy-based approach for friction identification of robotic joints [J]. Mechatronics, 2011, 21(3): 614-24

[21]

YehS S, SuH C. Development of friction identification methods for feed drives of CNC machine tools [J]. International Journal of Advanced Manufacturing Technology, 2011, 52(1/2/3/4): 263-278

[22]

ZhangW-jing. Parameter identification of lugre friction model in servo system based on improved particle swarm optimization algorithm [C]. Proceedings of the 26th Chinese Control Conference. Zhangjiajie, China, 2007135-139

[23]

HensenR H A, van DeM, SteinbuchM. Frequency domain identification of dynamic friction model parameters [J]. IEEE Transactions on Control Systems Technology, 2002, 10(2): 191-196

[24]

XuL, YaoB. Adaptive robust control of mechanical systems with non-linear dynamic friction compensation [J]. International Journal of Control, 2008, 81(2): 167-176

[25]

WhangX-j, WangS-ping. High Performance adaptive control of mechanical servo system with lugre friction model: Identification and compensation [J]. Journal of Dynamic Systems, Measurement and Control, 2012, 134(1): 1-8

[26]

WangM-j, HeZ, WuX-x, LiC-w, LiG-yao. Deformation simulation of low-temperature high-speed extrusion for 6063 Al alloy [J]. Journal of Central South University of technology, 2010, 17(5): 881-887

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/