Dolomite-apatite separation by amphoteric collector in presence of bacteria

Elmahdy Ahmed , El-Mofty Salah , Abdel-Khalek Mohamed , Abdel-Khalek Nagui , El-Midany Ayman

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (6) : 1645 -1652.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (6) : 1645 -1652. DOI: 10.1007/s11771-013-1658-9
Article

Dolomite-apatite separation by amphoteric collector in presence of bacteria

Author information +
History +
PDF

Abstract

Bioflotation represents one of the growing trends to enhance the selectivity of conventional flotation processes. It utilizes the micro-organisms to replace or to interact with the chemical reagents to increase the gap between surface properties of similar minerals and to enhance the separation selectivity. In this work, dolomite-phosphate separation was investigated using amphoteric collector (dodecyl-N-carboxyethyl-N-hyroxyethyl-imidazoline) in presence of bacteria. Two types of bacteria, Corynebacterium-diphtheriae-intermedius (CDI), and Pseudomonas aeruginosa (PA), were used. The collector-bacteria interaction was characterized by Fourier transform infra-red (FTIR), frothing height and Zeta potential. The results show that the collector-bacteria interaction improves the flotation selectivity. Although, the PA positively affects the separation results, the CDI cannot lower the MgO to less than 1%. A phosphate content of 0.7% MgO and 31.77% P2O5 with a recovery of 68% at pH 11, 3.0 kg/t amphoteric collector, 4×107 cells of PA is obtained.

Keywords

dolomite / phosphate / amphoteric collector / bacteria / bio-flotation / carbonate minerals

Cite this article

Download citation ▾
Elmahdy Ahmed, El-Mofty Salah, Abdel-Khalek Mohamed, Abdel-Khalek Nagui, El-Midany Ayman. Dolomite-apatite separation by amphoteric collector in presence of bacteria. Journal of Central South University, 2013, 20(6): 1645-1652 DOI:10.1007/s11771-013-1658-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

El-MidanyAA. Separation of dolomite from phosphate rock by reactive flotation [D]. University of Florida, 20041-129

[2]

El-ShallH, ZhangP, Abdel KhalekN, El-MoftyS. Beneficiation technology of phosphates: Challenges and solutions [J]. Mineral and Metallurgical Processing, 2004, 21(1): 17-26

[3]

El-ShallH, ZhangP, SnowR. Comparative analysis of dolomite/francolite flotation techniques [J]. Minerals and Metallurgical processing, 1996, 8(3): 135-140

[4]

SomasundaranP, RenY, RaoM Y. Applications of biological processes in mineral processing [J]. Colloids and Surfaces, 1998, 133(1): 13-23

[5]

ReddyR G, ImbrieW P, QueneauP BResidues and effluents: Processing and environmental considerations [M], 1991Pennsylvania (PA), USAThe Minerals, Metals and Materials Society

[6]

SmithR W, MisraM. Recent developments in the bioprocessing of minerals [J]. Mineral Processing and Extractive Metallurgy Review, 1993, 12(1): 37-60

[7]

DuganP RAttiaY A. The function of microbial polysaccharides in bioflocculation and biosorption of metal ions [C]. Flocculation in Biotechnology and Separation Systems, 1987San FranciscoElsevier337-350

[8]

RaoM K Y, NatarajanK A, SomasundaranP. Effect of bacterial conditioning of sphalerite and galena with Thiobacillus ferrooxidans on their flotability [C]. Engineering Foundation Conference, Santa Barbara, California: Springer, 1991105-120

[9]

SadowskiZ, GolabZSmithR W, MisraM. Biomodification of mineral surface properties by Aspergillus niger [C]. Engineering Foundation Conference, Santa Barbara, California. Mineral Bioprocessing, 199181-90

[10]

RaoM K Y, NatarajanK A, SomasundaranP. Effect of biotreatment with Thiobacillus ferrooxidans on the floatability of sphalerite and galena [J]. Minerals and Metallurgical Processing, 1992, 9(4): 95-100

[11]

NatarajanK A, DeoN. Role of bacterial interaction and bioreagents in iron ore flotation [J]. International Journal of Mineral Processing, 2001, 62(1/2/3/4): 143-157

[12]

HuK, GuG, LiS, QiuG. Bioleaching of chalcopyrite by Leptospirillum ferriphilum [J]. Journal of Central South University, 2012, 19(6): 1718-1723

[13]

XiaJ, ZhaoX, LiangC, YangY, NieZ, TangL, MaC, ZhengL, ZhaoY, QiuG. Sulfur speciation transformation during bioleaching of pyrite-containing sphalerite concentrate by thermophile Sulfolobus metallicus at 65 °C [J]. Journal of Central South University, 2012, 19(7): 1961-1966

[14]

CrundwellF K. How do bacteria interact with minerals? [J]. Hydrometallurgy, 2003, 71(1/2): 75-81

[15]

AtkinsA S, BridgewoodE W, DavisA J. A study of the suppression of pyritic sulfur in coal flotation by Thiobacillus ferrooxidans [J]. Coal Preparation, 1987, 5(1): 1-13

[16]

ChandraprabhaM N, NatarajanK A, SomasundaranP. Selective separation of pyrite from chalcopyrite and arsenopyrite by biomodulation using Acidithiobacillus ferrooxidans [J]. International Journal of Mineral Processing, 2005, 75(1): 113-122

[17]

MisraM, ChenS, SmithR W, RaichurA M. Mycobacterium phlei as a flotation collector for hematite [J]. Mineral and Metallurgical Processing, 1993, 10(4): 170-175

[18]

SmithR W, MisraM, ChenS. Adsorption of a hydrophobic bacterium onto hematite: Implications in the froth flotation of hematite [J]. Journal of Industrial Microbiology, 1993, 11(2): 63-67

[19]

ZhengX P, SmithR W, MehtaR K, MisraM, RaichurA M. Anionic flotation of apatite from dolomite modified by the presence of a bacterium [J]. Minerals and Metallurgical Processing, 1998, 15(2): 52-58

[20]

MisraM, ChenS, SmithR WSmithR W, MisraM. Kerogen aggregation using hydrophobic bacterium [C]. Mineral Bioprocessing, Mineral Bioprocessing, 1992Warrendale, PennsylvaniaThe Minerals Metals and Materials Society (TMS)133-142

[21]

RaichurA M, MisraM, BukkaK, SmithR W. Flocculation and flotation of coal by adhesion of hydrophobic Mycobacterium phlei [J]. Colloids and Surfaces B: Biointerfaces, 1996, 8(1/2): 13-24

[22]

RaichurA M, MisraM, DavisS A, SmithRW. Flocculation of fine coal using synthetic and biologically derived flocculants [J]. Minerals and Metallurgical Processing, 1997, 14(1): 22-26

[23]

DeoN, NatarajanK A. Interaction of Bacillus polymyxa with some oxide minerals with reference to mineral beneficiation and environmental control [J]. Minerals Engineering, 1997, 10(12): 1339-1354

[24]

DeoN, NatarajanK A. Studies on interaction of Paenibacillus polymyxa with iron ore minerals in relation to beneficiation [J]. International Journal of Mineral Processing, 1998, 55(1): 41-60

[25]

CollinsY E, StotzkyG. Heavy metals alter the electrokinetic properties of bacteria, yeasts and clay minerals [J]. Applied and Environmental Microbiology, 1992, 58(5): 1592-1600

[26]

ElmahdyA M, El-MidanyA A, Abdel-KhalekN A, El-MoftyS E. Effect of oleate/bacteria interactions on dolomite separation from phosphate ore [J]. Tenside Surfactants Detergents, 2009, 46(6): 340-345

[27]

ElmahdyA MBioflotation of dolomitic phosphate of sedimentary origin [D], 2004EgyptCairo University1-110

[28]

ElmahdyA M, El-MidanyA A, Abdel-KhalekN A. Application of amphoteric collector for dolomite separation by statistically designed experiments [C]. Mineral processing and Extractive Metallurgy, 2007, 116(1): 72-76

[29]

SharmaP K, RaoK H, ForssbergK S E, NatarajanK A. Surface chemical characterisation of Paenibacillus polymyxa before and after adaptation to sulfide minerals [J]. International Journal of Mineral Processing, 2001, 62(1): 3-25

[30]

AttiaY A, ElzekyM AAttiaY A. Biosurface modification in the separation of pyrite from coal by froth flotation, coal science and technology [C]. Processing and Utilization of High Sulfur Coal, 1985New YorkElsevier673-682

[31]

Abdel-KhalekN A, FarrahSSurface modification for advancing separation processes and environment protection. US-Egypt Joint Project [M], 2004EgyptAcademy of Scientific Research and Technology, Egypt

[32]

ScottW WStandard methods of chemical analysis [M], 19595th editionNew YorkVan Nostrand Company Inc

[33]

EwingG WInstrumental methods of chemical analysis [], 1975Meerut, IndiaKrishna Prakashan Media

[34]

BoiceC MSelective adsorption and surface modification of apatite and dolomite by microorganisms for the advancement of the phosphate flotation process [D], 2000Florida, USAUniversity of Florida1-130

[35]

SmithR W, MisraM. Mineral Bioprocessing-An overview [C]. Mineral Bioprocessing, 1991PennsylvaniaMinerals, Metals and Materials Society3-26

[36]

Van LoosdrechtM C M, LyklemaJ, NordeW, SchraaG, ZehnderA J B. Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion [J]. Applied and Environmental Microbiology, 1987, 53(8): 1898-1901

[37]

PoortingaA T, BosR, NordeW, BusscherH J. Electrical double layer interactions in bacterial adhesion to surfaces [J]. Surface Science Reports, 2002, 47(1): 1-32

[38]

BlakeR C, ElizabethA S, HowardG T. Solubilization of minerals by bacteria: Electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite and sulfur [J]. Applied and Environmental Microbiology, 1994, 60(9): 3349-3357

[39]

DeoN, NatarajanK A, SomasundaranP. Mechanisms of adhesion of Paenibacillus polymyxa onto hematite, corundum and quartz [J]. International Journal of Mineral Processing, 2001, 62(1/2/3/4): 27-39

[40]

ZhengX, ArpsP J, SmithR W. Adhesion of two bacteria onto dolomite and apatite: their effect on dolomite depression in anionic flotation [J]. International Journal of Mineral Processing, 2001, 62(1/2/3/4): 159-172

[41]

BrockT D, MadiganM T, MartinkoJ M, ParkerJBrock biology of microorganisms. 8th edition [M], 1994Englewoods Cliffs, New JerseyPrentice-Hall

[42]

ElmahdyA M, El-MoftyS E, Abdel-KhalekN A, El-MidanyA A. Impact of Corynebacterium-diphtheriae-intermedius bacteria adsorption on enhancing the phosphate and dolomite separation selectivity [J]. Adsorption Science and Technology, 2011, 29(1): 47-57

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/