Alkaline extraction characteristics of steelmaking slag batch in NH4Cl solution under environmental pressure

Hui-ning Zhang , An-jun Xu , Dong-feng He , Jian Cui

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (6) : 1482 -1489.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (6) : 1482 -1489. DOI: 10.1007/s11771-013-1638-0
Article

Alkaline extraction characteristics of steelmaking slag batch in NH4Cl solution under environmental pressure

Author information +
History +
PDF

Abstract

In order to obtain better carbonation effect, extraction behavior of slag batch is necessary to study. Relevant parameters like selective extraction yield were originally discussed. The relationship between selective extraction yield and conversion ratio was systemically focused on. The results show that alkaline earth metal conversion ratio is changed with leaching time and NH4Cl concentration by first order exponential, and the maximum conversion for calcium keeps about 68% at 120 min in 0.4 mol/L NH4Cl solution, while leaching temperature and particle size have a linear effect on conversion ratio. Selective extraction yield of calcium is more than 93%, and the value of Mg is less than 5%. Apparent layer bands of silicon and calcium appear in the surface area through morphology detection of slag after leaching, and the case for 38–75 μm slag batch is more obvious than 75–150 μm slag and slag with larger particle size when leaching in 0.4 mol /L NH4Cl solution for 90 min at 60 °C.

Keywords

steel slag / alkaline leaching / NH4Cl solution / selective extraction yield / conversion ratio

Cite this article

Download citation ▾
Hui-ning Zhang, An-jun Xu, Dong-feng He, Jian Cui. Alkaline extraction characteristics of steelmaking slag batch in NH4Cl solution under environmental pressure. Journal of Central South University, 2013, 20(6): 1482-1489 DOI:10.1007/s11771-013-1638-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HeH Y, NiH W, GanW G, LiuJ G, ChenJ. Resource utilization and evaluation of the steelmaking waste slag reuse in metallurgic flied [J]. J Wuhan Inst Tech, 2009, 31(1): 41-45

[2]

LiuJ Q, ZhengY R, LiJ T, FengJ. Research about desulfurizing agent ingredients with EAF reduce slag base [J]. Energy for Metallurgical Industry, 2006, 25(3): 41-43

[3]

GuoS X, DongY C, ChenE B, ZhangY P. Effect of converter steelmaking slag on desiliconization and dephosphorization of hot metal [J]. Journal of Iron And Steel Research, 2002, 14(6): 9-13

[4]

ZhaoL H, CangD Q, LiuP, BaiH, TangQ. Preparation and microstructure analysis of CaO-MgO-SiO2 steel-slag ceramics [J]. Journal of University of Science and Technology Beijing, 2011, 33(8): 995-1000

[5]

YanG S B, LuoZ Z, WenY C, HeW, WangJ, ChenY. Vanadium recovery from BOF slag containing vanadium oxide [J]. Iron and Steel, 2005, 40(4): 72-75

[6]

QianQ. Review of technology on extracting vanadium pentoxide from high calcium vanadium-bearing steel slag [J]. China Resources Comprehensive Utilization, 2009, 276: 15-17

[7]

UibuM, KuusikR, AndreasL, KirsimäeK. The CO2-binding by Ca-Mg-silicates in direct aqueous carbonation of oil shale ash and steel slag [J]. Energy Procedia, 2011, 4: 925-932

[8]

ChenZ Y, O’ConnorW K, GerdemannS J. Chemistry of aqueous mineral carbonation for carbon sequestration and explanation of experimental results [J]. Environ Prog, 2006, 25(2): 160-166

[9]

GerdemannS J, O’ConnorW K, DahlinD C, PennerL R, RushA. Ex situ aqueous mineral carbonation [J]. Environ Sci Technol, 2007, 41(7): 2587-2593

[10]

WindtL D, ChaurandP, RoseJ. Kinetics of steel slag leaching: Batch tests and modeling [J]. Waste Manage, 2011, 31: 225-235

[11]

ChangE E, PanS Y J J, ChenYH, ChuH S, WangC F, ChiangP C. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor [J]. Hazard Mater, 2011, 195: 107-114

[12]

HuijgenW J J, WitkampG J, ComansR N J. Mineral CO2 sequestration by steel slag carbonation [J]. Environ Sci Technol, 2005, 39(24): 9676-9682

[13]

KodamaS, NishimotoT, YamamotoN, YogoK, YamadaK. Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution [J]. Energy, 2008, 33: 776-784

[14]

ZomerenA, VanderlaanS R, KobesenH B A, HuijgenW J J, ComansR N J. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure [J]. Waste Manage, 2011, 31: 2236-2244

[15]

HuijgenW J J, WitkampG J, ComansR N J. Chem Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process [J]. Eng Sci, 2006, 61: 4242-4251

[16]

LekakhS N, RbertsonD G C, RawlinsC H, RichardsV L, PeasleeK D. Investigation of a two-stage aqueous reactor design for carbon dioxide sequestration using steelmaking slag [J]. Metall Mater Trans B, 2008, 39: 484-492

[17]

TeirS, ElonevaS, FogelholmC J, ZevenhovenR. Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production [J]. Energy, 2007, 32: 528-539

[18]

SunY, YaoM S, ZhangJ P, YangG. Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution [J]. Chem Eng J, 2011, 173: 437-445

[19]

PtášekP, NoskováM, BrandštetrJ, ŠoukalF, OpravilT. Dissolving behavior and calcium release from fibrous wollastonite in acetic acid solution [J]. Thermochim Acta, 2010, 498: 54-60

[20]

WorrellE, PriceL, MartinN. Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector [J]. Energy, 2001, 26(5): 513-536

[21]

HuijgenW J J, WitkampG J, ComansR N J. Cost evaluation of CO2 sequestration by aqueous mineral carbonation [J]. Energy Convers Manage, 2007, 48: 1923-1935

[22]

HuijgenW J J, WitkampG J, ComansR N J. Energy consumption and net CO2 sequestration of aqueous mineral carbonation [J]. Ind Eng Chem Res, 2006, 45(26): 9184-9194

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/