Characterization of alternating current impedance properties of biomedical electrodes

Wei Zhou , De-cai Cheng , Rong Song , Chun-jian Zhang , Wen-ping Xu , Xiao-ling Pan

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (5) : 1254 -1258.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (5) : 1254 -1258. DOI: 10.1007/s11771-013-1609-5
Article

Characterization of alternating current impedance properties of biomedical electrodes

Author information +
History +
PDF

Abstract

To study the alternating current (AC) impedance properties of Ag/AgCl electrocardiograph (ECG) electrodes, the electrode pair was gel-to-gel connected, and then the electrical potential was recorded after a safe stimulating current passes through the electrode pair, so the AC impedance data of ECG electrodes were obtained. Varying the frequency and value of stimulating current, the detailed comparison and analysis of AC impedance properties of the electrodes were performed, and the stability was further characterized by using the continuous measurement within 24 h. The experimental results show that the AC impedance values of electrodes decreased, and then slightly increased with the increase of frequency of stimulating current. The minimum AC impedance value was obtained when the frequency was changed to 10 kHz. When the stimulating current increased, the AC impedance values of electrodes showed a slight decrease, but did not change significantly. Besides, the continuous measurement results show that the impedance value presented a significant increase in the initial 30 min, and then was stabilized in the following measuring process.

Keywords

bioelectrical impedance / electrocardiograph electrodes / alternating current impedance / frequency properties / current properties

Cite this article

Download citation ▾
Wei Zhou, De-cai Cheng, Rong Song, Chun-jian Zhang, Wen-ping Xu, Xiao-ling Pan. Characterization of alternating current impedance properties of biomedical electrodes. Journal of Central South University, 2013, 20(5): 1254-1258 DOI:10.1007/s11771-013-1609-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChiY M, JungT P, CauwenberghsG. Dry-contact and noncontact biopotential electrodes: Methodological review [J]. IEEE Review in Biomedical Engineering, 2010, 3(1): 106-119

[2]

LiuR, WangX-h, ZhouZ-ying. Application of MEMS microneedles array in biomedicine [J]. Journal of Biomedical Engineering, 2004, 21(3): 482-485

[3]

AshrafM W, TayyabaS, AfzulpurkarN. Micro-electromechanical systems (MEMS) based microfluidic devices for biomedical applications [J]. International Journal of Molecular Sciences, 2011, 12(6): 3648-3704

[4]

BrownB H. Medical impedance tomography and process impedance tomography: A brief review [J]. Measurement Science & Technology, 2001, 12(8): 991-996

[5]

DongX-zhen. The development of the bioelectric impedance technologies [J]. Chinese Journal of Medical Physics, 2004, 21(6): 311-320

[6]

RenC-shi. Electrical bioimpedance measurement technology [J]. China Medical Devices Information, 2004, 10(1): 21-25

[7]

WebsterJ GMedical Instrumentation, Application and Design [M], 19983rd ed.New YorkWiley

[8]

SchwanH PDetermination of biological impedance. Physical technique in biological research (vol. VI, PartB) [M], 1971New YorkAcademic Press

[9]

GongW-y, J-h, WangY, ShaH, RenC-shi. Impedance property of electrodes used in bio-electrical impedance measurement [J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2009, 13(9): 1653-1656

[10]

KalvøyH, TronstadC, NordbottenB, GrimnesS, MartinsenØ G G. Electrical impedance of stainless steel needle electrodes [J]. Annals of Biomedical Engineering, 2010, 38(7): 2371-2382

[11]

GrissP, Tolvanen-LaaksoH K, MerilainenP, StemmeG. Characterization of micromachined spiked biopotential electrodes [J]. IEEE Transactions on Biomedical Engineering, 2002, 49(6): 597-604

[12]

NgW C, SeetH L, LeeK, NingN, TaiW, SutedjaM, FuhJ Y H, LiX P. Micro-spike EEG electrode and the vacuum-casting technology for mass production [J]. Journal of Materials Processing Technology, 2009, 209(9): 4434-4438

[13]

BaekJ Y, AnJ H, ChoiJ M, ParkK S, LeeS H. Flexible polymeric dry electrodes for the long-term monitoring of ECG [J]. Sensors and Actuators A, 2008, 143(2): 423-429

[14]

GruetzmannA, HansenS, MullerJ. Novel dry electrodes for ECG monitoring [J]. Physiological Measurement, 2007, 28(11): 1375-1390

[15]

HewsonD J, HogrelJ Y, LangeronY, DucheneJ. Evolution in impedance at the electrode-skin interface of two types of surface EMG electrodes during long-term recordings [J]. Journal of Electromyography and Kinesiology, 2003, 13(3): 273-279

[16]

SearleA, KirkupL. A direct comparison of wet, dry and insulating bioelectric recording electrodes [J]. Physiological Measurement, 2000, 21(2): 271-283

[17]

XuS-w, DaiM, XuC-h, ChenC-s, TangM-x, ShiX-t, DongX-zhen. Performance evaluation of five types of Ag/AgCl bio-electrodes for cerebral electrical impedance tomography [J]. Annals of Biomedical Engineering, 2011, 39(7): 2059-2067

[18]

HuigenE, PeperA, GrimbergenC A. Investigation into the origin of the noise of surface electrodes [J]. Medical & Biological Engineering & Computing, 2002, 40(3): 332-388

[19]

HuangF-l, CaoQ-x, WeiY-g, LiY, LeiM-bi. The preparation and electrochemical performance of Ag/AgCl electrodes [J]. Electronic Science and Technology, 2010, 23(6): 29-34

[20]

HeL, XuL-k, WangJ-t, YinP-fei. Performance of Ag/AgCl reference electrode prepared by hot dip coating method [J]. Corrosion Science and Protection Technology, 2009, 21(5): 482-485

[21]

BeckmannL, NeuhausC, MedranoG, JungbeckerN, WalterM, GriesT, LeonhardtS. Characterization of textile electrodes and conductors using standardized measurement setups [J]. Physiological Measurement, 2010, 31(2): 233-247

[22]

ZhangY, WangY-s, SongY-su. Impedance characteristics for solid Ag/AgCl electrode used as recording electric field generated by vessels in seawater [J]. Journal of Shanghai University (English Edition), 2009, 13(1): 57-62

[23]

PankeO, BalkenhohlT, KafkaJ, SchaferD, LisdatF. Impedance spectroscopy and biosensing [J]. Advances in Biochemical Engineering-Biotechnology, 2008, 109: 195-237

[24]

WangYanElectrode system property and the evaluation method of electrical impedance tomography [D], 2009BeijingPeking Union Medical College

[25]

TallgrenP, VanhataloS, KailaK, VoipioJ. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials [J]. Clinical Neurophysiology, 2005, 116(4): 799-806

[26]

SpinelliE, HabermanM. Insulating electrodes: A review on biopotential front ends for dielectric skin-electrode interfaces [J]. Physiological Measurement, 2010, 31(10): s183-s198

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/