Construction of improved rigid blocks failure mechanism for ultimate bearing capacity calculation based on slip-line field theory
Lian-heng Zhao , Feng Yang
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (4) : 1047 -1057.
Construction of improved rigid blocks failure mechanism for ultimate bearing capacity calculation based on slip-line field theory
Based on the slip-line field theory, a two-dimensional slip failure mechanism with mesh-like rigid block system was constructed to analyze the ultimate bearing capacity problems of rough foundation within the framework of the upper bound limit analysis theorem. In the velocity discontinuities in transition area, the velocity changes in radial and tangent directions are allowed. The objective functions of the stability problems of geotechnical structures are obtained by equating the work rate of external force to internal dissipation along the velocity discontinuities, and then the objective functions are transformed as an upper-bound mathematic optimization model. The upper bound solutions for the objective functions are obtained by use of the nonlinear sequential quadratic programming and interior point method. From the numerical results and comparative analysis, it can be seen that the method presented in this work gives better calculation results than existing upper bound methods and can be used to establish the more accurate plastic collapse load for the ultimate bearing capacity of rough foundation.
ultimate bearing capacity / rough foundation / slip-line field theory / upper bound limit analysis theorem / slip failure mechanism / nonlinear programming method
| [1] |
|
| [2] |
|
| [3] |
DONALD I B, CHEN Z Y. Upper bound solutions in geomechanics: Computational plasticity, fundamentals and applications [C]//. Proc 4th lnt Conf Comp Plas. Barcelona, Spain, 1995: 1797–1808. |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
MARTIN C M. Exact bearing capacity calculations using the method of characteristics [C]// Proceedings of the 11th International Conference of IACMAG. Turin, 2005: 441–450. |
| [11] |
|
| [12] |
SOKOLOVSKII V V. Statics of soil media [M]. JONES R, SCHOFIELD A. London: Butterworths Science, 1965. |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
/
| 〈 |
|
〉 |