Optimizing rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 grown on waste frying oil using response surface method and batch-fed fermentation

Zhi Luo , Xing-zhong Yuan , Hua Zhong , Guang-ming Zeng , Zhi-feng Liu , Xiao-ling Ma , Ya-ying Zhu

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (4) : 1015 -1021.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (4) : 1015 -1021. DOI: 10.1007/s11771-013-1578-8
Article

Optimizing rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 grown on waste frying oil using response surface method and batch-fed fermentation

Author information +
History +
PDF

Abstract

Rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 with waste frying oil as sole carbon source was studied using response surface method. Cultures were incubated in shaking flask with temperature, NO3− and Mg2+ concentrations as the variables. Meanwhile, fed-batch fermentation experiments were conducted. The results show that the three variables are closely related to rhamnolipid production. The optimal cultivation conditions are of 6.4 g/L NaNO3, 3.1 g/L MgSO4 at 32 °C, with the maximum rhamnolipid production of 6.6 g/L. The results of fed-batch fermentation experiments show that feeding the oil in two batches can enhance rhamnolipid production. The best time interval is 72 h with the maximum rhamnolipid production of 8.5 g/L. The data are potentially useful for mass production of rhamnolipid on oil waste with this bacterium.

Keywords

Pseudomonas aeruginosa / rhamnolipid / waste frying oil / response surface method / fed-batch

Cite this article

Download citation ▾
Zhi Luo, Xing-zhong Yuan, Hua Zhong, Guang-ming Zeng, Zhi-feng Liu, Xiao-ling Ma, Ya-ying Zhu. Optimizing rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 grown on waste frying oil using response surface method and batch-fed fermentation. Journal of Central South University, 2013, 20(4): 1015-1021 DOI:10.1007/s11771-013-1578-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MulliganC N. Environmental applications for biosurfactants [J]. Environ Pollut, 2005, 133(2): 183-198

[2]

BognoloG. Biosurfactants as emulsifying agents for hydrocarbons [J]. Colloids and Surfaces A: Phys Eng, 1999, 152(1/2): 41-52

[3]

RosenbergE, RonE Z. High- and low-molecular-mass microbial surfactants [J]. Appl Microbiol Biotechnol, 1999, 52: 154-162

[4]

RochaC, InfanteC. Enhanced oily sludge biodegradation by a tension-active agent isolated from Pseudomonas aeruginosa USB-CS1 [J]. Appl Microbiol Biotechnol, 1997, 47: 615-619

[5]

FleckL C, BiccaF C, AyubZ M. Physiological aspects of hydrocarbon emulsification, metal resistance and DNA profile of biodegrading bacteria isolated from oil polluted sites [J]. Biotechnol Lett, 2000, 22: 285-289

[6]

ZhangL, SomasundaranP, SinghS K, ArthurP E, RichardG. Synthesis and interfacial properties of sophorolipid derivatives [J]. Colloid Surface A, 2004, 240: 75-82

[7]

MercadeM E, ManresaM A, RobertM, AndresC D, GuineaJ. Olive oil mill effluent (OOME): New substrate for biosurfactant production [J]. Bioresour Technol, 1993, 43(1): 1-6

[8]

BednarskiW, AdamczakM, TomasikJ, PlaszczykM. Application of oil refinery waste in the biosynthesis of glycolipids by yeast [J]. Bioresour Technol, 2004, 95(1): 15-18

[9]

DubeyK, JuwakarA. Distillery and curd whey wastes as viable alternative sources for biosurfactant production [J]. J Microbiol Biotechnol, 2001, 17(1): 61-69

[10]

BenincasaM, ContieroJ, ManresaM A, MoraescI O. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source [J]. J Food Eng, 2002, 54(4): 283-288

[11]

RazaZ A, KhanM S. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils [J]. Biotechnol Lett, 2006, 28: 1623-1631

[12]

LuisH, GuerraS, KäppeliO, FiechterA. Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors [J]. Applied Microbiology and Biotechnology, 1986, 24: 443-448

[13]

ParraJ L, GuineaJ, ManresaM A, RobertM, MercademE, ComellesF, BoschM P. Chemical characterization and physicochemical behavior of biosurfactants [J]. J Am Oil Chem Soc, 1989, 66(1): 141-145

[14]

RobertM, MercadéM E, BoschM P. Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1 [J]. Biotechnol Lett, 2003871-874

[15]

PantazakiA A, DimopoulouM I, SimouO M. Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8 [J]. Appl Microbiol Biotechnol, 2010, 88: 939-951

[16]

HabaE, EspunyM J, BusquetsM, ManresaA. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils [J]. J Appl Bacteriol Microbiol, 2000, 88: 379-387

[17]

RoseiroJ C. Medium development for xanthan production [J]. Process Biochem, 1992, 27: 167-175

[18]

MaA Y M, OoraikulB. Optimization of enzymatic hydrolysis of canola meal with response surface methodology [J]. J Food Process, 1986, 10: 99-113

[19]

KalilS J, MaugeriF, RodriguesM I. Response surface analysis and simulation as a tool for bioprocess design and optimization [J]. Process Biochem, 2000, 35: 539-550

[20]

SiegmundI, WagnerF. New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar [J]. Biotechnol Tech, 1991, 5: 265-268

[21]

ZhangY, MillerR M. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant) [J]. Appl Environ Microbiol, 1992, 58: 3276-3282

[22]

DuboisM, GillesK A, HamiltonJ K, RebersP A, SmithF. Colorimetric method for determination of sugars and related substances [J]. Anal Chem, 1956, 28: 350-356

[23]

MonticoneV, MannebachM H, TreinerC. Coadsorption of 2-naphtol and cetylpyridinium chloride at a silicar water interface in relation with the micellar solubilization effect [J]. Langmuir, 1994, 10: 2395-2398

[24]

HaalandP DSeparating signals from the noise: Experimental design in biotechnology [M], 1989New YorkMarcel Dekker105-259

[25]

MulliganC N, GibbsB F. Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. [J]. Appl Environ Microb, 1989, 55: 3016-3019

[26]

SyldatkC, WagnerF. Production of biosurfactants [J]. Biosur Biotechol, 1987, 101: 89-120

[27]

SyldatkC, LangS, WagnerF. Chemical and physical characterization of four interfacial active rhamnolipids from Pseudomonas sp. DSM 2874 grown on n-alkanes [J]. Z. Naturfosch, 1985, 40: 51-60

[28]

SantaA L M, SebastianG V, MenezesE P. Production of biosurfactants from Pseudomonas aeruginosa PA1 isolated in oil environments [J]. Braz J Chem Eng, 2002, 19: 159-166

[29]

RashediH, JamshidiE, AssadiM M, AlvestL M, SantosaS, PereirA N, FreireD M G. Isolation and production of biosurfactant from Pseudomonas aeruginosa isolated from Iranian southern wells oil [J]. Int J Environ Sci Technol, 2005, 2: 121-127

[30]

ChenS Y, WeiY H, ChangJ S. Repeated pH-stat batch-fed fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2 [J]. Appl Microbiol Biotechnol, 2007, 76: 67-74

[31]

LeeK M, HwangS H, HaS D, JangJ H, LimD J, KongJ Y. Rhamnolipid production in batch and batch-fed fermentation using Pseudomonas aeruginosa BYK-2 KCTC 18012P [J]. Biotechnol Bioprocess, 2004, 9(4): 267-273

[32]

ReisR S, RochaS L, ChapeaurougeD A, DomontaG B, AnnaclmM S, FreireaD M G, PeralesJ. Effects of carbon and nitrogen sources on the proteome of Pseudomonas aeruginosa PA1 during rhamnolipid production [J]. Process Biochem, 2010, 45: 1504-1510

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/