Adaptive impedance matching using quantum genetic algorithm

Yang-hong Tan , Sai-hua Chen , Gen-miao Zhang , Zhi-ting Xiong

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (4) : 977 -981.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (4) : 977 -981. DOI: 10.1007/s11771-013-1573-0
Article

Adaptive impedance matching using quantum genetic algorithm

Author information +
History +
PDF

Abstract

An adaptive technique adopting quantum genetic algorithm (QGA) for antenna impedance tuning is presented. Three examples are given with different types of antenna impedance. The frequency range of the dual standards is from 1.7 to 2.2 GHz. Simulation results show that the proposed tuning technique can achieve good accuracy of impedance matching and load power. The reflection coefficient and VSWR obtained are also very close to their ideal values. Comparison of the proposed QGA tuning method with conventional genetic algorithm based tuning method is also given, which shows that the QGA tuning algorithm is much faster. Moreover, the proposed method can be useful for software defined radio systems using a single antenna for multiple mobile and wireless bands.

Keywords

impedance matching / conventional genetic algorithm / quantum genetic algorithm

Cite this article

Download citation ▾
Yang-hong Tan, Sai-hua Chen, Gen-miao Zhang, Zhi-ting Xiong. Adaptive impedance matching using quantum genetic algorithm. Journal of Central South University, 2013, 20(4): 977-981 DOI:10.1007/s11771-013-1573-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SAIDATUL N A, SOH P J, SUN Y, LAUDER D, AZREMI A A H. Multiband fractal PIFA (Planar Inverted F Antenna) for mobile phones [C]// Proc. IEEE International Symposium on Wireless Communications Systems, York, UK, 2010: 671–675.

[2]

BoyleK R, YuanY, LigthartL P. Analysis of mobile phone antenna impedance variations with user proximity [J]. IEEE Transactions on Antennas and Propagation, 2007, 55(2): 364-372

[3]

NeoW C E, LinY, LiuX, VreedeL C N, LarsonL E, SpiritoM, PelkM J, BuismanK, AkhnoukhA, GraauwA, NanverL K. Adaptive multi-band multi-mode power amplifier using integrated varactor-based tunable matching networks [J]. IEEE Journal of Solid-State Circuits, 2006, 44(9): 2166-2176

[4]

El-NozahiM, Sanchez-SinencioE, EntesariK. A CMOS low-noise amplifier with reconfigurable input matching network [J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(5): 1054-1062

[5]

MORITZ J R, SUN Y. Frequency agile antenna tuning and matching [C]// Proc Eighth International IEE Conference on HF Radio Systems and Techniques, Surrey, UK, 2000: 169–174.

[6]

SUN Y, FIDLER J K. High speed automatic antenna tuning units [C]// Proc. IEE International Conference on Antennas and Propagation Eindhoven, Netherlands, 1995: 218–222.

[7]

ZOLOMY A, MERNYEI F, ERDELYI J, PARDOEN M, TOTH G. Automatic antenna tuning for RF transmitter IC applying high Q antenna [C]// IEEE Radio Frequency Integrated Circuits Symposium, Forth worth 2004: 501–504.

[8]

van BezooijenA, de JonghM A, ChanloC, RuijsL C H, van StratenF, MahmoudiR, van RoerrmundA H M. A GSM/EDGE/WCDMA adaptive series-LC matching network using RF-MEMS switches [J]. IEEE Journal of Solid-State Circuits, 2008, 43(10): 2259-2268

[9]

van BezooijenA, de JonghM A, van StratenF, MahmoudiR, van RoermundH M. Adaptive impedance-matching techniques for controlling L networks [J]. IEEE Transactions on Circuits and Systems - I: Regular Papers, 2010, 57(2): 495-505

[10]

SunY, LauW K. Automatic impedance matching using Genetic Algorithms [C]. Proc. IEE Conference on Antennas and Propagation, York, UK, 199931-36

[11]

NarayananA, MooreM. Quantum inspired genetic algorithm [C]. Proc of the International Conference on Evolutionary Computation, 199661-66

[12]

MalossiniA, BlanzieriE, CalarcoT. Quantum genetic optimization [J]. IEEE Transactions on Evolutionary Computation, 2008, 12(2): 231-241

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/