Effect of Mo2C on electrochemical corrosion behavior of Ti(C,N)-based cermets

Guang-biao Dong , Ji Xiong , Mei Yang , Zhi-xing Guo , Wei-cai Wan , Cheng-hong Yi

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (4) : 851 -858.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (4) : 851 -858. DOI: 10.1007/s11771-013-1557-0
Article

Effect of Mo2C on electrochemical corrosion behavior of Ti(C,N)-based cermets

Author information +
History +
PDF

Abstract

The electrochemical corrosion behavior of Ti(C,N)-based cermets with different Mo2C additions was investigated in freely aerated 10% H2SO4 and potentiodynamic polarization of all the materials was conducted from −0.5 to 1.5 V. There are two passive regions for all polarization curves. The first should be attributed to passive film formation due to Ti(C,N), while the second may be due to the presence of Ni. Corrosion current density increases with Mo2C content increasing, from 2.06×10−3 to 6.70×10−3 mA/cm2. It is indicated that the corrosion resistance of Ti(C,N)-based cermets decreases with the increase of Mo2C addition. A skeleton of Ti(C,N) gains is observed after dissolution of Ni. The inner rim of cermets, rich in Mo2C, is corroded along with Ni binder and is more serious with the increase of Mo2C content. The secondary carbide Mo2C can be oxidized and dissolved in sulphuric acid.

Keywords

Ti(C,N)-based cermets / Mo2C / electrochemical corrosion

Cite this article

Download citation ▾
Guang-biao Dong, Ji Xiong, Mei Yang, Zhi-xing Guo, Wei-cai Wan, Cheng-hong Yi. Effect of Mo2C on electrochemical corrosion behavior of Ti(C,N)-based cermets. Journal of Central South University, 2013, 20(4): 851-858 DOI:10.1007/s11771-013-1557-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SlysI G, BerezanskayaV I, KosskoI A, PomytkinA P. Development of new corrosion-resistant and wear-resistant materials for use in aggressive hydrogen medium [J]. International Journal of Hydrogen Energy, 2001, 26(5): 531-536

[2]

XieaY, LlewellynR J, StilesD. Amorphous diamond coating of tungsten carbide and titanium carbonitride for erosive slurry pump component service [J]. Wear, 2001, 250(1/2): 88-99

[3]

EttmayerP, KolaskaH, LengauerW, DreyerK. Ti(C,N) cermets?Metallurgy and properties [J]. International Journal of Refractory Metals and Hard Materials, 1995, 13(6): 343-351

[4]

StutthiruangwongS, MoriG. Corrosion properties of Co-based cemented carbides in acidic solutions [J]. International Journal of Refractory Metals and Hard Materials, 2003, 21(3/4): 135-145

[5]

HumanA M, ExnerH E. Electrochemical behaviour of tungsten-carbide hardmetals [J]. Materials Science and Engineering: A, 1996, 209(1/2): 180-191

[6]

HussainovaI. Effect of microstructure on the erosive wear of titanium carbide-based cermets [J]. Wear, 2003, 255(1–6): 121-128

[7]

CelottaD W, QureshiU A. Sand erosion testing of novel compositions of hard ceramics [J]. Wear, 2007, 263(21): 278-283

[8]

HussainovaI, PirsoJ, AntonovM, JnhaniK. High temperature erosion of Ti(Mo)C-Ni cermets [J]. Wear, 2009, 267(11): 1894-1899

[9]

BhardwajM, BalasubramaniamR. Influence of material structure on the electrochemical behavior of nickel-titanium carbonitride composites [J]. Materials Characterization, 2008, 59(10): 1474-1480

[10]

Manoj KumarB V, BalasubramaniamR, BasuB. Electrochemical behavior of TICN-Ni-based cermets [J]. Journal of the American Ceramic Society, 2007, 90(1): 205-210

[11]

LavrenkoV A, PanasyukA D, Desmaison-BrutM, ShvetsV A, DesmaisonJ. Kinetics and mechanism of electrolytic corrosion of titanium-based ceramics in 3% NaCl solution [J]. Journal of the European Ceramic Society, 2005, 25(10): 1813-1818

[12]

AhnS, KangS. Effect of various carbides on the dissolution behavior of Ti(C0.7N0.3) in a Ti(C0.7N0.3)-30Ni system [J]. International Journal of Refractory Metals and Hard Materials, 2001, 19(4/5/6): 539-545

[13]

MariD, BologniniS, FeusierG, CutardT, VerdonC, ViatteT, BenoitW. TiMoCN based cermets. Part I: Morphology and phase composition [J]. International Journal of Refractory Metals and Hard Materials, 2003, 21(1/2): 37-46

[14]

MariD, BologniniS, FeusierG, CutardT, VerdonC, ViatteT, BenoitW. TiMoCN based cermets. Part II: Microstructure and room temperature mechanical properties [J]. International Journal of Refractory Metals and Hard Materials, 2003, 21(1/2): 47-53

[15]

WangS Y, XiongW H, YanM S, FanC. Effects of molybdenum on the microstructure and mechanical properties of Ti(C,N)-based cermets with low Ni [J]. Rare Metals, 2006, 25(1): 90-95

[16]

LindahlP, ManinertT, JonssonH, AndrenH O. Microstructure and mechanical properties of a (Ti,W,Ta,Mo) (C,N)-(Co,Ni)-type cermet [J]. International Journal of Refractory Metals and Hard Materials, 1993, 4(2): 187-204

[17]

WilliamgripsV K, BarshkliaharrishC. Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering [J]. Thin Solid Films, 2006, 514(1/2): 204-211

[18]

AndrenH O, RolanderU, LindahlP S. Phase composition in cemented carbides and cermets [J]. International Journal of Refractory Metals and Hard Materials, 1993, 12(3): 107-113

[19]

BologniniS, FeusierG, MariD, VitteT, BenoitW. High temperature mechanical behaviour of Ti(C,N)-Mo-Co cermets [J]. International Journal of Refractory Metals and Hard Materials, 1998, 16(4/5/6): 257-268

[20]

WallyR, EttmayerP, LengauerW. The Ti-Mo-C-N system: Stability of the (Ti,Mo)(C,N)1−x phase [J]. Journal of Alloys and Compounds, 1995, 228(1): 96-101

[21]

Manoj KumarB V, BalasubramaniamR, BasuB. Electrochemical behavior of TiCN-Ni-based cermets [J]. Journal of the American Ceramic Society, 2007, 90(1): 205-210

[22]

ChoiY, BaikN I, LeeJ S, HongS I, HahnY D. Corrosion and wear properties of TiC Ni-Mo composites produced by direct consolidation during a self-propagating high-temperature reaction [J]. Composites Science and Technology, 2001, 61(7): 981-986

[23]

WalshF C, KerrC, CourtS. Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatings [J]. Surface Coatings Technology, 2008, 202(21): 5092-5102

AI Summary AI Mindmap
PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/