Optimal and suboptimal white noise smoothers for nonlinear stochastic systems

Xiao-xu Wang , Quan Pan , Yan Liang , Yong-mei Cheng

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (3) : 655 -662.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (3) : 655 -662. DOI: 10.1007/s11771-013-1532-9
Article

Optimal and suboptimal white noise smoothers for nonlinear stochastic systems

Author information +
History +
PDF

Abstract

A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density function, an optimal and unifying white noise smoothing framework was firstly derived on the basis of the existing state smoother. The proposed framework was only formal in the sense that it rarely could be directly used in practice since the model nonlinearity resulted in the intractability and infeasibility of analytically computing the smoothing gain. For this reason, a suboptimal and practical white noise smoother, which is called the unscented white noise smoother (UWNS), was further developed by applying unscented transformation to numerically approximate the smoothing gain. Simulation results show the superior performance of the proposed UWNS approach as compared to the existing extended white noise smoother (EWNS) based on the first-order linearization.

Keywords

nonlinear stochastic system / white noise smoother / optimal framework / unscented transformation

Cite this article

Download citation ▾
Xiao-xu Wang, Quan Pan, Yan Liang, Yong-mei Cheng. Optimal and suboptimal white noise smoothers for nonlinear stochastic systems. Journal of Central South University, 2013, 20(3): 655-662 DOI:10.1007/s11771-013-1532-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MendelJ M. White-estimators for seismic data processing in oil exploration [J]. IEEE Transactions on Automatic Control, 1977, 22(5): 694-706

[2]

DengZ L, ZhangH S, LiuS J, ZhouL. Optimal and self-tuning white noise estimators with applications to deconvolution and filtering problems [J]. Autmatica, 1996, 32(2): 199-216

[3]

MendelJ MOptimal seismic deconvolution: An estimation based approach [M], 1983New YorkAcademic Press134-138

[4]

DengZ L, XuY. White noise estimation theory based on Kalman filtering [J]. ACTA AUTOMATICA SINICA, 2003, 29(1): 143-146

[5]

DengZ L. Unifying and universal optimal white noise estimators for time-varying systems [J]. Control Theory & Application, 2003, 20(1): 143-146

[6]

SunS L, GaoY, DengZ L. Information fusion white noise deconvolution estimators for time-varying systems [J]. Signal Processing, 2008, 88(5): 1233-1247

[7]

SunS L, GaoY, DengZ L, LiC, WangJ W. Multi-model information fusion Kalman filtering and white noise deconvolution [J]. Information Fusion, 2010, 11(2): 163-173

[8]

RubaaiA, YoungP. EKF-Based PI-/PD-Like fuzzy-neural-network controller for brushless drives [J]. IEEE Transaction on Industry Applications, 2011, 47(6): 2391-2401

[9]

WangX X, PanQ, LiangY, ZhaoC H. Application of unscented transformation for nonlinear state smoothing [J]. ACTA AUTOMATICA SINICA, 2012, 38(7): 1107-1112

[10]

SimoS, JouniH. On Gaussian optimal smoothing for non-linear state space models [J]. IEEE Transactions on Automatic Control, 2008, 55(8): 1938-1941

[11]

WangX X, PanQ, ChengY M, ZhaoC H. New sigma point filtering algorithms for nonlinear stochastic systems with correlated noises [J]. Journal of Central South University, 2012, 19(4): 1010-1020

[12]

SimoS. Unscented Rauch-Tung-Striebel Smoother [J]. IEEE Transactions on Automatic Control, 2008, 53(3): 845-849

[13]

HanY B. A Rao-Blackwellized particle filter for Adaptive beamforming with strong interference [J]. IEEE Transaction on Signal Processing, 2012, 60(6): 2952-2961

[14]

MurrayL, StorkeyA. Particle smoothing in continuous time: A fast approach via density estimation [J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1017-1026

[15]

GuimaraesA, Ait-El-FquihB, DesbouvriesF. A Fixed-lag particle smoother for blind SISO equalization of time-varying channels [J]. IEEE Transactions on Wireless Communications, 2010, 9(2): 512-516

[16]

GodsillS, DoucetA, WestM. Monte Carlo smoothing for nonlinear time series [J]. Journal of the American Statistical Association, 2004, 99(465): 156-168

[17]

WuY X, HuD W, WuM P, HuX P. A numerical-integration perspective on Gaussian filters [J]. IEEE Transactions on Signal Processing, 2006, 54(8): 2910-2921

[18]

SubrahmanyaN, ShinY C. Adaptive divided difference filtering for simultaneous state and parameter estimation [J]. Automatica, 2009, 45(7): 1686-1693

[19]

ArasaratnamI, HaykinS. Cubature Kalman filter [J]. IEEE Transactions on Automatic Control, 2009, 54(8): 1254-1269

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/