Formation of active radicals and mechanism of photocatalytic degradation of phenol process using eosin sensitized TiO2 under visible light irradiation

Lin Song , Xin Zhang , Yun-kun Ma , Ming-yu Li , Xiao-long Zeng

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (2) : 495 -500.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (2) : 495 -500. DOI: 10.1007/s11771-013-1511-1
Article

Formation of active radicals and mechanism of photocatalytic degradation of phenol process using eosin sensitized TiO2 under visible light irradiation

Author information +
History +
PDF

Abstract

The role of oxygen and the generation of active radicals in the photocatalitic degradation of phenol were investigated using the eosin sensitized TiO2 as photocatalyst under visible light irradiation. Diffuse reflectance spectra show that the absorbancy range of eosin/TiO2 is expanded from 378 nm (TiO2) to about 600 nm. The photocatalitic degradation of phenol is almost stopped when the eosin/TiO2 system is saturated with N2, which indicates the significance of O2. The addition of NaN3 (a quencher of single oxygen) causes about a 62% decrease in the phenol degradation. The phenol degradation ratio is dropped from 92% to 75% when the isopropanol (a quencher of hydroxyl radical) is present in the system. The experimental results show that there are singlet oxygen and hydroxyl radical generated in the eosin/TiO2 system under visible light irradiation. The changes of absorbancy indicate that the hydrogen peroxide might be produced. Through the analysis and comparison, it is found that the singlet oxygen is the predominant active radical for the degradation of phenol.

Keywords

eosin sensitized TiO2 / visible light / photocatalytic degradation / reaction mechanism

Cite this article

Download citation ▾
Lin Song, Xin Zhang, Yun-kun Ma, Ming-yu Li, Xiao-long Zeng. Formation of active radicals and mechanism of photocatalytic degradation of phenol process using eosin sensitized TiO2 under visible light irradiation. Journal of Central South University, 2013, 20(2): 495-500 DOI:10.1007/s11771-013-1511-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PapadamT., XekoukoulotakisN. P., PouliosI., MantzavinosD.. Photocatalytic transformation of acid orange 20 and Cr (VI) in aqueous TiO2 suspensions [J]. Journal of Photochemistry and Photobiology A-Chemistry, 2007, 186(2/3): 308-315

[2]

GayaU. I., AbdullahA. H.. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems[J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2008, 9(1): 1-12

[3]

KimG., ChoiW.. Charge-transfer surface complex of EDTA-TiO2 and its effect on photocatalysis under visible light [J]. Applied Catalysis B: Environmental, 2010, 100(1/2): 77-83

[4]

WangN., ZhuL.-h., HuangY.-p., SheY.-b., YuY.-m., TangH.-qing.. Drastically enhanced visible-light photocatalytic degradation of colorless aromatic pollutants over TiO2 via a charge-transfer-complex path: A correlation between chemical structure and degradation rate of the pollutants [J]. Journal of Catalysis, 2009, 266(2): 199-206

[5]

YangC. F., HuangH. H., ChenC. Y., HuangP. C., DiaoC. C.. The development of the physical and electrical characteristics of multi-layer TiO(2)-W-TiO(2) thin films[J]. Applied Physics A-Materials Science & Processing, 2009, 94(1): 117-122

[6]

HondaK., YoshikawaT.. Characterization of TiO2 ultrafine particle prepared by low-temperature hydrolysis of TiCl4 in high-concentration hydrochloric acid aqueous solution [J]. Bunseki Kagaku, 2007, 56(1): 51-54

[7]

ShabanY. A., KhanS. U. M.. Visible light active carbon modified n-TiO2 for efficient hydrogen production by photoelectrochemical splitting of water [J]. International Journal of Hydrogen energy, 2008, 33(4): 1118-1126

[8]

DengS.-n., WuFeng.Environment Photochemical[M], 2003BeijingChemical Industry Press308-353

[9]

ShankarK., BashamJ. I., AllamN. K., VargheseO. K., MorG. K., FengX. J., PauloseM., SeaboldJ. A., ChoiK. S., GrimesC. A.. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry [J]. Journal of Physical Chemistry C, 2009, 113(16): 6327-6359

[10]

HamalD. B., KlabundeK. J.. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2[J]. Journal of Colloid and Interface Science, 2007, 311(2): 514-522

[11]

ChenX.-b., MaoS. S.. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J]. Chemical Reviews, 2007, 107(7): 2891-2959

[12]

HufschmidtD., LiuL., SelzerV., BahnemannD.. Photocatalytic water treatment: fundamental knowledge required for its practical application [J]. Water Science and Technology, 2004, 49(4): 135-140

[13]

ZhangD.-d., QiuR.-l., SongL., EricB., MoY.-q., HuangX.-fei.. Role of oxygen active species in the photocatalytic degradation of phenol using polymer sensitized TiO2 under visible light irradiation [J]. Journal of Hazardous Materials, 2009, 163(2/3): 843-847

[14]

Environmental Protection Department of China. Environment protection standard of the People’s Republic of China( HJ 503-2009) [S]. 2009.

[15]

SongL., QiuR.-l., MoY.-q., ZhangD.-d., WeiH., XiongYa.. Photodegradation of phenol in a polymer-modified TiO2 semiconductor particulate system under the irradiation of visible light [J]. Catalysis Communications, 2007, 8(3): 429-433

[16]

SongL., ZhangX., ZengX.-long.. Application of poly(fluorene-co-bithiophene)s as a novel sensitizer for TiO2 in the photodegradation of phenol under irradiation of GaN LED clusters [J]. Reaction Kinetics, Mechanisms and Catalysis, 2010, 102(2): 295-302

[17]

TakeuchiM., MartraG., ColucciaS., AnpoM.. Verification of the photoadsorption of H2O molecules on TiO2 semiconductor surfaces by vibrational absorption spectroscopy [J]. Journal of Physical Chemistry C, 2007, 111(27): 9811-9817

[18]

NakamuraR., NakatoY.. Primary intermediates of oxygen photoevolution reaction on TiO2(Rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements [J]. Journal of the American Chemical Society, 2004, 126(4): 1290-1298

[19]

Di ValentinC., FinazziE., PacchioniG., SelloniA., LivraghiS., PaganiniM. C., GiamelloE.. N-doped TiO2: Theory and experiment[J]. Chemical Physics, 2007, 339(1/2/3): 44-56

[20]

ChoY. M., ChoiW. Y., LeeC. H., HyeonT., LeeH. I.. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2[J]. Environmental Science and Technology, 2001, 35(5): 966-970

[21]

SharmaV. K., GrahamN. J. D., LiX. Z., YuanB. L.. Ferrate(VI) enhanced photocatalytic oxidation of pollutants in aqueous TiO2 suspensions [J]. Environmental Science and Pollution Research, 2010, 17(2): 453-461

[22]

LiuG.-m., ZhaoJ.-c., HidakaH.. ESR spin-trapping detection of radical intermediates in the TiO2-assisted photo-oxidation of sulforhodamine B under visible irradiation [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 133(1/2): 83-88

[23]

FuH.-x., G.-x., LiS.-ben.. Photocatalytic reduction of Cr6+ ion in the presence of organics [J]. Acta physico-chimica sinci, 1997, 13(2): 106-112

[24]

HanS. K., HwangT., YoonY., KangJ. W.. Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trapping electron paramagnetic resonance (EPR)[J]. Chemosphere, 2011, 84(8): 1095-1101

[25]

SchweitzerC., SchmidtR.. Physical mechanisms of generation and deactivation of singlet oxygen [J]. Chemical Reviews, 2003, 103(5): 1685-1758

[26]

DerosaM. C., CrutchleyR. J.. Photosensitized singlet oxygen and its applications [J]. Coordination Chemistry Reviews, 2002, 233–234(1): 351-371

[27]

StylidiM., KondaridesD. I., VerykiosX. E.. Visible light-induced photocatalytic degradation of acid orange 7 in aqueous TiO2 suspensions [J]. Applied Catalysis B: Environmental, 2004, 47(3): 189-201

[28]

LIAO Li-fu, HE Yu-yuan, YUAN Ya-li. Determination of hydroxyl radicalin fenton reaction by visible spcetrophotometry [J]. Journal of Hengyang Medieal College, 1996(2): 130–132. (in Chinese)

[29]

KimS., ChoiW.. Dual photocatalytic pathways of trichloroacetate degradation on TiO2: Effects of nanosized platinum deposits on kinetics and mechanism [J]. The Journal of Physical Chemistry B, 2002, 106(51): 13311-13317

[30]

ChiaL., TangX., WeaversL. K.. Kinetics and mechanism of photoactivated periodate reaction with 4-chlorophenol in acidic solution [J]. Environmental Science and Technology, 2004, 38(24): 6875-6880

[31]

ZhangY.-t., BaiS.-j., ZhangWei.. An improved method for determination of trace hydrogen peroxide in water [J]. Journal of Environment and health, 2006, 23(3): 258-261

AI Summary AI Mindmap
PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/