Layer by layer synthesis of Sn-Co-C microcomposites and their application in lithium ion batteries

Xiang-yang Zhou , You-lan Zou , Juan Yang , Jing Xie , Song-can Wang

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (2) : 326 -331.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (2) : 326 -331. DOI: 10.1007/s11771-013-1491-1
Article

Layer by layer synthesis of Sn-Co-C microcomposites and their application in lithium ion batteries

Author information +
History +
PDF

Abstract

Alloy anodes were studied for pursuing Sn-based microcomposite synthesis, assembly and performance for lithium ion batteries. The self-assembled Sn-Co-C composites with nano-scaled microstructures were prepared via solution method and carbothermal technology. The morphology and physical structure were investigated with scanning electron microscope (SEM) and X-ray diffraction (XRD). The as-prepared materials were assembled to half cell coin for the purpose of discussing the galvanostatic cycling, cyclic voltammetry and rate-capability performance. Results reveal that nanoscaled CoSn2 alloys covered with Sn and C layer by layer are wrapped by cross-linked porous carbon network to form spherical microstructure. This distinguishing feature of Sn-Co-C composites provides a possible solution to the problems of Sn particle aggregation and poor electron transport, and has strong effect on improving electrochemical performance.

Keywords

Sn-Co-C composite / hydrolysis / carbothermal technology / electrochemical performance / lithium ion battery

Cite this article

Download citation ▾
Xiang-yang Zhou, You-lan Zou, Juan Yang, Jing Xie, Song-can Wang. Layer by layer synthesis of Sn-Co-C microcomposites and their application in lithium ion batteries. Journal of Central South University, 2013, 20(2): 326-331 DOI:10.1007/s11771-013-1491-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AnttiV., JustinS.. Lithium ion battery production [J]. Journal of Chemical Thermodynamics, 2012, 46(1): 80-85

[2]

MenkinS., GoldnitskyD., PeledE.. Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications [J]. Electrochemistry Communications, 2009, 11(9): 1789-1791

[3]

WangC., Du Gao-huiD., KennyS., HuangH.-x., ZhongY.-j., JiangJ. Z.. Ultrathin SnO2 Nanosheets: Oriented attachment mechanism, nonstoichiometric defects, and enhanced lithium-ion battery performances [J]. Journal of Physical Chemstry C, 2012, 116(6): 4000-4011

[4]

MaiL.-q., XuX., HanC.-h., LuoY.-z., XuL., WuY.-m., ZhaoY.-long.. Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property[J]. Nano Letters, 2011, 11(11): 4992-4996

[5]

YangJ., ZhouX.-y., ZouY.-l., TangJ.-jing.. A hierarchical porous carbon material for high power lithium ion batteries [J]. Electrochimica Acta, 2011, 56(24): 8576-8581

[6]

LinY.-s., GuhJ.-g., HuangM.-hsiu.. Shell-by-shell synthesis and applications of carbon-coated SnO2 hollow nanospheres in lithium-ion battery [J]. Journal of Physical Chemistry C, 2010, 114(30): 13136-13141

[7]

VidhyaC., RusliF., MichealA. F.. Quaternary ammonium ionic liquid electrolyte for a silicon nanowire-based lithium ion battery [J]. Journal of Physical Chemistry C, 2011, 115(44): 22048-22053

[8]

WangW., RigvedE., PrashantN. K.. Vertically aligned silicon/carbon nanotube (VASCNT) arrays: Hierarchical anodes for lithium-ion battery [J]. Electrochemistry Communication, 2011, 13(5): 429-432

[9]

FergusonP. P., MartineM. L., GeorgeA. E., DahnJ. R.. Studies of tin-transition metal-carbon and tin-cobalt-transition metal-carbon negative electrode materials prepared by mechanical attrition [J]. Journal of Power Sources, 2009, 194(2): 794-800

[10]

ChenJ.-z., YangL., FangS.-h., HiranoS.-i., KazuhiroT.. Three-dimensional core-shell Cu@Cu6Sn5 nanowires as the anode material for lithium ion batteries[J]. Journal of Power Sources, 2012, 199(1): 341-345

[11]

WangS.-y., JiangS.-p., WhiteT. J., GuoJ., WangXin.. Electrocatalytic activity and interconnectivity of Pt nanoparticles on multiwalled carbon nanotubes for fuel cells [J]. Journal of Physical Chemistry C, 2009, 113(43): 18953-18961

[12]

ParkC., SohnH. J.. A mechano-and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries [J]. Electrochimica Acta, 2009, 54(26): 6367-6373

[13]

ZhangD.-f., SunL.-d., JiaC.-j., YanZ.-g., YouL.-p., YanC.-hua.. Hierarchical assembly of SnO2 nanorod arrays on -Fe2O3 nanotubes: A case of interfacial lattice compatibility [J]. Journal of American Chemistry Society, 2005, 127(39): 13492-13493

[14]

SunX.-l., WangX.-h., QinY.-l., LiX.-w., QiaoL., FengN., HuD.-k., HeD.-yan.. Synthesis of novel pompon-like porous SnO2 and its application in lithium-ion battery [J]. Materials Letters, 2012, 66(1): 193-195

[15]

LiangS.-z., ZhuX.-f., LianP.-c., YangW.-s., WangH.-hui.. Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries [J]. Journal of Solid State Chemistry, 2011, 184(6): 1400-1404

[16]

HarunaH., ItohS., HoribaT., SekiE., KohnoK.. Large-format lithium-ion batteries for electric power storage [J]. Journal of Power Sources, 2011, 196(16): 7002-7005

[17]

HeZ.-q., XiongL.-z., LiuW.-p., WuX.-m., ChenS., HuangK.-long.. Synthesis and electrochemical properties of SnO2-polyaniline composite [J]. Journal of Central South University of Technology, 2008, 15(2): 214-217

[18]

DuZ.-j., ZhangS.-chao.. Enhanced electrochemical performance of Sn-Co nanoarchitectured electrode for lithium ion batteries [J]. Journal of Physical Chemistry C, 2011, 115(47): 23603-23609

[19]

ZaiJ.-t., WangK.-x., SuY.-z., QianX.-f., ChenJ.-sheng.. High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries [J]. Journal of Power Sources, 2011, 196(7): 3650-3654

[20]

TianM., WangW., LeeS.-h., LeeY.-c., YangR.-gui.. Enhancing Ni-Sn nanowire lithium-ion anode performance by tailoring active/inactive material interfaces [J]. Journal of Power Sources, 2011, 196(23): 10207-10212

[21]

ChangK., WangZ., HuangG.-c., LiH., LeeJ.-yang.. Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode [J]. Journal of Power Sources, 2012, 201(1): 259-266

[22]

YE Xiao-chuan. The heat moulding process of the phenolic resin with super fine and heat-resisting performance[EB/OL]. [2012-2-04]. http://www.whtigers.com/article/details.asp?id=9/. (in Chinese)

[23]

XuYan.Measurement of Gd-Co-Sn ternary alloy isothermal section and CoSn-GdCoSn Variable temperature section [D], 2007GuangxiGuangxi University

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/