Glass formation for iron-based alloys by combining kinetic and thermodynamic parameters

J. H. Willy , Gang Wang , Zhong-wu Liu

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (2) : 293 -300.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (2) : 293 -300. DOI: 10.1007/s11771-013-1487-x
Article

Glass formation for iron-based alloys by combining kinetic and thermodynamic parameters

Author information +
History +
PDF

Abstract

The glass formation was intensively studied for Fe-based alloys. Parameters defining kinetics and thermodynamic behavior of crystallization were calculated using calorimetric measurements and physical properties of constituent elements. It is found that the critical cooling rate Rc estimated by combining kinetic and thermodynamic parameters highly correlates with measured Rc found in literatures with correlation coefficient R2=0.944, and alloy compositions with high melting enthalpy ΔHm can easily form glass even without high undercooling and high value of the β-parameter of Turnbull’s theory, revealing that the glass formation in this group of alloys is mostly controlled by growth limitation. This combination of kinetic and thermodynamic parameters can be used to determine alloy composition with good glass forming ability in Fe-based alloys just using physical properties of alloying elements and calorimetric measurements.

Keywords

metallic glass / glass-forming ability / iron-based alloys / critical cooling rate

Cite this article

Download citation ▾
J. H. Willy, Gang Wang, Zhong-wu Liu. Glass formation for iron-based alloys by combining kinetic and thermodynamic parameters. Journal of Central South University, 2013, 20(2): 293-300 DOI:10.1007/s11771-013-1487-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhangJ., LimK. Y., FengY. P., LiY.. Fe-Nd-B-based hard magnets from bulk amorphous precursor [J]. Scripta Materialia, 2007, 56(11): 943-946

[2]

TAMURAR, KOBAYASHIS, FUKUZAKIT. ISOBE M, UEDA Y. synthesis and magnetic properties of Fe-B-Nd-Nb nanocomposite magnets [J]. Journal of Physics Conference Series, 2009, 144(1/2): 012068-(

[3]

LiH. X., JungH. Y., YiS.. Glass forming ability and magnetic properties of bulk metallic glasses Fe68.7-xC7.0-Si3.3-B5.5-P8.7-Cr2.3-Mo2.5-Al2.0-Cox (x=0–10) [J]. Journal of Magnetism and Magnetic Materials, 2008, 320(3/4): 241-245

[4]

FerencJ., Erenc-SedziakT., KowalczykM., KulikT.. The supercooled liquid region span of Fe-based bulk metallic glasses [J]. Journal of Alloys and Compounds, 2010, 495(2): 327-329

[5]

ChinT. S., LinC. Y., LeeM. C., HuangR. T., HuangS. M.. Bulk nano-crystalline Fe-based alloys by annealing bulk glassy precursors [J]. Intermetallics, 2008, 16(1): 52-57

[6]

ChenQ. J., ShenJ., FanH. B., SunJ. F., HuangY. J., MccartneyD. C.. Glass-Forming ability of an iron-based alloy enhanced by co addition and evaluated by a new criterion [J]. Chinese Physics Letters, 2005, 22(7): 1736-738

[7]

ChangH. W., ShihM. F., HsiehC. C., ChangW. C.. Development of bulk Nd9.5Fe75.5-xMxB15 (M = Mo, Nb, Ta, Ti, and Zr; x=0–4) magnets by direct casting method [J]. Journal of Alloys and Compounds, 2009, 484(1/2): 143-146

[8]

TurnbullD.. Under what conditions can a glass be formed [J]. Contemporary Physics, 1969, 10(5): 473-488

[9]

SinghP. K., DubeyK. S.. Thermodynamic behaviour of bulk metallic glasses [C]. 5th International Conference on Thermophysical Properties, 2010, 1249: 153-156

[10]

SinghP. K., DubeyK. S.. Analysis of thermodynamic behaviour of bulk metallic glass forming melts and glass forming ability [J]. Journal of Thermal Analysis and Calorimetry, 2010, 100(1): 347-353

[11]

GuoJ., BianX. F., LiX. L., ZhangC. Z.. Evaluation of liquid fragility for glass-forming alloys based on mixing enthalpy and mismatch entropy [J]. Intermetallics, 2010, 18(5): 933-937

[12]

TakeuchiA., InoueA.. Quantitative evaluation of critical cooling rate for metallic glasses [J]. Materials Science and Engineering A, 2001, A304–306: 446-451

[13]

TakeuchiA., InoueA.. Mixing enthalpy of liquid phase calculated by miedema’s scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys [J]. Intermetallics, 2010, 18(9): 1779-1789

[14]

LuZ. P., LiuC. T.. A new glass-forming ability criterion for bulk metallic glasses [J]. Acta Materialia, 2002, 50(13): 3501-3512

[15]

LawsK. J., GunB., FerryM.. Influence of casting parameters on the critical casting size of bulk metallic glass [J]. Metallurgical and Materials Transactions A, 2009, 40A(10): 2377-2387

[16]

GuoS., LuZ. P., LiuC. T.. Identify the best glass forming ability criterion [J]. Intermetallics, 2010, 18(5): 883-888

[17]

DuX. H., HuangJ. C., LiuC. T., LuZ. P.. New criterion of glass forming ability for bulk metallic glasses [J]. Journal of Applied Physics, 2007, 101(8): 086108

[18]

GuoS., LiuC. T.. New glass forming ability criterion derived from cooling consideration [J]. Intermetallics, 2010, 18(11): 2065-2068

[19]

ZhangG. H., ChouK. C.. A criterion for evaluating glass-forming ability of alloys [J]. Journal of Applied Physics, 2009, 106(9): 1-4

[20]

YuanZ. Z., BaoS. L., LuY., ZhangD. P., YaoL.. A new criterion for evaluating the glass-forming ability of bulk glass forming alloys [J]. Journal of Alloys and Compounds, 2008, 459(1/2): 251-260

[21]

ZhangP., WeiH., WeiX., LongZ., SuX.. Evaluation of glass-forming ability for bulk metallic glasses based on characteristic temperatures [J]. Journal of Non-Crystalline Solids, 2009, 355(43/44): 2183-2189

[22]

LongZ. L., WeiH. Q., DingY. H., ZhangP., XieG. Q., InoueA.. A new criterion for predicting the glass-forming ability of bulk metallic glasses [J]. Journal of Alloys and Compounds, 2009, 475(1/2): 207-219

[23]

CaiA. H., ChenH., AnW. K., TanJ. Y., ZhouY., PanY., SunG. X.. Melting enthalpy delta h-m for describing glass forming ability of bulk metallic glasses [J]. Journal of Non-Crystalline Solids, 2008, 354(15/16): 1808-1816

[24]

CaiA. H., ChenH., AnW. K., TanJ. Y., ZhouY.. Relationship between melting enthalpy delta Hm and critical cooling rate Rc for bulk metallic glasses [J]. Materials Science and Engineering, 2007, 457(1/2): 6-12

[25]

TakeuchiA., KatoH., InoueA.. Vogel-Fulcher-Tammann plot for viscosity scaled with temperature interval between actual and ideal glass transitions for metallic glasses in liquid and supercooled liquid states [J]. Intermetallics, 2010, 18(4): 406-411

[26]

SudreauF., CognetG.. Corium viscosity modelling above liquidus temperature [J]. Nuclear Engineering and Design, 1997, 178(3): 269-277

[27]

PonnambalamV., PoonS. J., GaryJ. S.. Fe-Based bulk metallic glasses with diameter thickness larger than one centimeter [J]. Journal of Materials Research, 2004, 19: 1320-1323

[28]

SHENJ. Exceptionally high glass-forming ability of an fecocrmocby alloy [J]. Applied Physics Letters, 2005, 86(15): 151907-(

[29]

ChenQ. J., FanH. B., ShenJ., SunJ. F., LuZ. P.. Critical cooling rate and thermal stability of Fe-Co-Zr-Y-Cr-Mo-B amorphous alloy [J]. Journal of Alloys and Compounds, 2006, 407(1/2): 125-128

[30]

DAVIES H A. Rapidly quenching and formation of metallic glasses [C]// Proc Rapidly quenched metals III. Brighton, 1978: 1–23.

[31]

BhattJ., MurtyB. S.. Thermodynamic modeling of Zr-Ti-Cu-Ni-Be bulk metallic glass [J]. Transactions of the Indian Institute of Metals, 2009, 62(4/5): 413-416

[32]

BasuJ., MurtyB. S., RanganathanS.. Glass forming ability: miedema approach to (Zr, Ti, Hf)-(Cu, Ni) binary and ternary alloys [J]. Journal of Alloys and Compounds, 2008, 465(1/2): 163-172

[33]

InoueA.. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Materialia, 2000, 48(1): 279-306

[34]

MukherjeeS., SchroersJ., ZhouZ., JohnsonW. L., RhimW. K.. Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability [J]. Acta Materialia, 2004, 52(12): 3689-3695

[35]

DoremusB. W., RobertH., Roberts, TurnbullD.Growth and Perfection of Crystals [M], 1958New YorkWiley

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/