Maximum useful energy rate and efficiency of a recuperative Brayton cogeneration plant

Xiao-li Hao , Guo-qiang Zhang

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (1) : 156 -163.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (1) : 156 -163. DOI: 10.1007/s11771-013-1471-5
Article

Maximum useful energy rate and efficiency of a recuperative Brayton cogeneration plant

Author information +
History +
PDF

Abstract

A thermodynamic model was developed to analyze the performance of cogeneration plant based on irreversible recuperative Brayton cycle. A parameter, dimensionless total useful energy rate (DTUER), was used as the criterion for performance optimization of cogeneration plant. The effects of cycle parameters, internal irreversibilities, and recuperator efficiency on maximum DTUER and on the efficiency at maximum DTUER were numerically investigated. The relation between DTUER and cogeneration efficiency was also analyzed. The results show that there exists an optimal compressor pressure ratio which maximizes the DTUER. It is also found that there exists an optimal power-to-heat ratio which results in a dual-maximum DTUER.

Keywords

recuperative Brayton cycle / cogeneration / optimization / thermodynamics

Cite this article

Download citation ▾
Xiao-li Hao, Guo-qiang Zhang. Maximum useful energy rate and efficiency of a recuperative Brayton cogeneration plant. Journal of Central South University, 2013, 20(1): 156-163 DOI:10.1007/s11771-013-1471-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ColpannC. O., YesinT.. Thermodynamic and thermoeconomic comparison of combined cycle cogeneration system [J]. Int J Exergy, 2006, 3(3): 272-290

[2]

RosenM. A., LeM. N., DincerI.. Efficiency analysis of a cogeneration and district energy system [J]. Appl Thermal Eng, 2005, 25(1): 147-159

[3]

AbusogluA., KanogluM.. Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 1-Formulations [J]. Appl Thermal Eng, 2009, 29(2/3): 234-241

[4]

BadamiM., MuraM.. Exergetic analysis of an innovative small scale combined cycle cogeneration system [J]. Energy, 2010, 35(6): 2535-2543

[5]

AguilarF. J. E., GarcíaM. T., TrujilloE. C., VillanuevaJ. A. B., OjedaF. J. F.. Prediction of performance, energy savings and increase in profitability of two gas turbine steam generator cogeneration plant, based on experimental data [J]. Energy, 2011, 36(2): 742-754

[6]

CaresanaF., BrandoniC., FeliciottiP., BartoliniC. M.. Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator [J]. Appl Energy, 2011, 88(3): 659-671

[7]

GamouS., YokoyamaR., ItoK.. Optimal unit sizing of cogeneration systems in consideration of uncertain energy demands as continuous random variables [J]. Energy Conversion and Management, 2002, 43(9–12): 1349-1361

[8]

ZhangB.-h., LongW.-ding.. An optimal sizing method for cogeneration plants [J]. Energy and Buildings, 2006, 38(3): 189-195

[9]

KongX. Q., WangR. Z., HuangX. H.. Energy optimization model for a CCHP system with available gas turbines [J]. Appl Thermal Eng, 2005, 25(2/3): 377-391

[10]

SahinB., KodalA., EkmeckiI., YilmazT.. Exergy optimization for an endoreversible cogeneration cycle [J]. Energy, 1997, 22(5): 551-557

[11]

UstY., SahinB., KodalA.. Performance optimisation of irreversible cogeneration systems based on a new exergetic performance criterion: exergy density [J]. J Energy Institute, 2009, 82(1): 48-52

[12]

KaushikS. C., ChandraH., KhaliqA.. Thermal exergy optimization for an irreversible cogeneration power plant [J]. Int J Exergy, 2005, 2(3): 260-273

[13]

ErdilA.. Exergy optimization for an irreversible combined cogeneration cycle [J]. J Energy Institute, 2005, 78(1): 27-31

[14]

AtmacaM., GumusM., InanA. T., YilmazT.. Optimization of irreversible cogeneration systems under alternative performance criteria [J]. Int J Thermophys, 2009, 30(5): 1724-1732

[15]

ChenL.-g., WangJ.-h., SunF.-rui.. Power density analysis and optimization of an irreversible closed intercooled regenerated Brayton cycle [J]. Mathematical and Computer Modelling, 2008, 48(3/4): 527-540

[16]

WangW.-h., ChenL.-g., SunF.-r., WuChih.. Optimal heat conductance distribution and optimal intercooling pressure ratio for power optimisation of irreversible closed intercooled regenerated Brayton cycle [J]. J Energy Institute, 2006, 79(2): 116-119

[17]

YasinU., BahriS., AliK., IsmailH. A.. Ecological coefficient of performance analysis and optimization of an irreversible regenerative-Brayton heat engine [J]. Applied Energy, 2006, 83(6): 558-572

[18]

TyagiS. K., ChenJ., KaushikS. C.. Optimal criteria based on the ecological function of an irreversible intercooled regenerative modified Brayton cycle [J]. Int J Exergy, 2005, 2(1): 90-107

[19]

YilmazT.. Performance optimization of a gas turbine-based cogeneration system [J]. J Phys D: Appl Phys, 2006, 39(11): 2454-2458

[20]

HaoX.-l., ZhangG.-qiang.. Maximum useful energy rate analysis of an endoreversible Joule-Brayton cogeneration cycle [J]. Applied Energy, 2007, 84(11): 1092-1101

[21]

TaoG.-s., ChenL.-g., SunF.-rui.. Exergoeconomic performance optimization for an endoreversible simple gas turbine closed-cycle cogeneration plant [J]. Int J Ambient Energy, 2009, 30(3): 115-124

[22]

PilavachiP. A.. Mini- and micro-gas turbines for combined heat and power [J]. Appl Thermal Eng, 2002, 22(18): 2003-2014

[23]

LeffH. S.. Thermal efficiency at maximum work output: New result for old heat engines [J]. Am J Phys, 1987, 55(7): 602-610

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/