Synthesis and spark plasma sintering of Al-Mg-Zr alloys

N. Saheb , A. S. Hakeem , A. Khalil , N. Al-Aqeeli , T. Laoui

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (1) : 7 -14.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (1) : 7 -14. DOI: 10.1007/s11771-013-1452-8
Article

Synthesis and spark plasma sintering of Al-Mg-Zr alloys

Author information +
History +
PDF

Abstract

Although casting is commonly used to process aluminum alloys, powder metallurgy remains a promising technique to develop aluminum based materials for structural and functional applications. The possibility to synthesize Al-Mg-Zr alloys through mechanical alloying and spark plasma sintering techniques was explored. Al-10Mg-5Zr and Al-5Mg-1Zr alloyed powders were synthesized through wet ball milling the appropriate amount of elemental powders. The dried milled powders were spark plasma sintered through passing constant pulsed electric current with fixed pulse duration at a pressure of 35 MPa. The samples were vacuum sintered at 450, 500, 550, 600 and 620 °C for 10, 15 and 20 min. The Al-10Mg-5Zr alloy displays poor densification at lower sintering temperatures of 450, 500, 550 and 600 °C. Its sinterability is improved at a temperature of 620 °C whereas sintering temperatures higher than 620 °C leads to partial melting of the alloy. It is possible to sinter the Al-5Mg-1Zr alloy at 450, 500 and 550 °C. The increase of sintering temperature improves its densification and increases its hardness. The Al-5Mg-1Zr alloy displays better densification and hardness compared to Al-10Mg-5Zr alloys.

Keywords

aluminum alloys / mechanical alloying / spark plasma sintering / powder metallurgy

Cite this article

Download citation ▾
N. Saheb, A. S. Hakeem, A. Khalil, N. Al-Aqeeli, T. Laoui. Synthesis and spark plasma sintering of Al-Mg-Zr alloys. Journal of Central South University, 2013, 20(1): 7-14 DOI:10.1007/s11771-013-1452-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MillerW. S., ZhuangL., BottemaJ., WittebroodA. J., De SmetP., HaszlerA., ViereggeA.. Recent development in aluminium alloys for the automotive industry [J]. Mater Sci Eng. A, 2000, 280: 37-49

[2]

SahebN., LaouiT., DaudA. R., YahayaR., RadimanS.. Microstructure and Hardness behaviours of Ti-containing Al-Si alloys [J]. Phil Mag, 2002, 82: 803-814

[3]

VintilaR., CharestA., DrewR. A. L., BrochuM.. Synthesis and consolidation via spark plasma sintering of nanostructured Al-5356/B4C composite [J]. Mater Sci Eng A, 2011, 528: 4395-4407

[4]

ChoiP. P., KimJ. S., NguyenO. T. H., KwonD. H., KwonY. S., KimJ. C.. Al-La-Ni-Fe bulk metallic glasses produced by mechanical alloying and spark-plasma sintering [J]. Mater Sci Eng A, 2007, 449/450/451: 1119-1122

[5]

MulaS., MondalK., GhoshS., PabiS. K.. Structure and mechanical properties of Al-Ni-Ti amorphous powder consolidated by pressure-less, pressure-assisted and spark plasma sintering [J]. Mater Sci Eng A, 2010, 527: 3757-3763

[6]

GaoX., YuanY., ZhangD. J., LiW., LinR. D., CuiJ. M., LuoF. H.. Influence of double press/double sinter processing on sintered alloys made from pre-alloyed steel powder [J]. Journal of Central South University: Science and Technology, 2011, 42(9): 2628-2634

[7]

ZhuF. X., YiJ. H., PengY. D.. Sintering response of copper powder metal compact in microwave field [J]. Journal of Central South University: Science and Technology, 2009, 40(1): 106-111

[8]

WangX. F., HuangQ. Z., YinC. L., TanR. X., NingK. Y., WuC. C.. Wet friction properties of copper-based material via powder metallurgy [J]. Journal of Central South University: Science and Technology, 2008, 39(3): 517-521

[9]

SahebN., MengP. T., DaudA. R.. Compaction and sintering behaviour of A356-fly ash composites: A preliminary investigation [J]. Powder Metall, 2007, 50: 54-59

[10]

LiS. L., LiuY., CuiJ. M., YangW. Z., LiH. P., HeY. L.. synthesis and hydrogen desorption properties of Mg2FeH6 hydrogen storage material by reactive mechanical alloying [J]. Journal of Central South University: Science and Technology, 2008, 391: 1-6

[11]

ShenG., LinF., MaX. M., ShiW. Z., OuyangH. W.. Mechanical alloying of Cr-Fe-Mn mixed powder and its magnetic exchange interaction [J]. Journal of Central South University: Science and Technology, 2005, 36(3): 364-368

[12]

LuL., LaiM. O.Mechanical alloying [M], 1998BostonKluwer Academic

[13]

XuC. Y., JiaS. S., CaoZ. Y.. Synthesis of Al-Mn-Ce alloy by the spark plasma sintering [J]. Mater Chara, 2005, 54: 394-398

[14]

ShiX.-l., YangH., WangSheng.. Spark plasma sintering of W-15Cu alloy from ultrafine composite powder prepared by spray drying and calcining-continuous reduction technology [J]. Mater Chara, 2009, 60: 133-137

[15]

KubotaM.. Properties of nano-structured pure Al produced by mechanical grinding and spark plasma sintering [J]. J Alloys Comp, 2007, 434/435: 294-297

[16]

XqC. Y., JiaS. S., CaoZ. Y.. Synthesis of Al-Mn-Ce alloy by the spark plasma sintering [J]. Mater Chara, 2005, 54: 394-398

[17]

SasakiT. T., MukaiT., HonoK.. A high-strength bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering [J]. Scrip Mater, 2007, 57: 189-192

[18]

SasakiT. T., OhkuboT., HonoK.. Microstructure and mechanical properties of bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering [J]. Acta Mater, 2009, 57: 3529-3538

[19]

ChenH.-b., TaoK., YangB., ZhangJ.-shan.. Nanostructured Al-Zn-Mg-Cu alloy synthesized by cryomilling and spark plasma sintering [J]. Trans. Nonferrous Met Soc China, 2009, 19: 1110-1115

[20]

Jatinkumar KumarR., SivaprahasamD., Seetharama RajuK., Subramanya SarmaV.. Microstructure and mechanical properties of nanocrystalline high strength Al-Mg-Si (AA6061) alloy by high energy ball milling and spark plasma sintering [J]. Mater Sci Eng A, 2009, 527: 292-296

[21]

SahebN.. Spark plasma sintering of Al6061 and Al2124 alloys [J]. Advanced Materials Research, 2011, 284/285/286: 1656-1660

[22]

AbdullahK., HakeemA. S., SahebN.. Optimization of process parameters in spark plasma sintering of Al6061 and Al2124 aluminum alloys [J]. Advanced Materials Research, 2011, 328/329/330: 1517-1522

[23]

SAHEB N. Spark plasma and microwave sintering of Al6061 and Al2124 alloys [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20 (2).

[24]

LaverniaE. J., GomezE., GrantN. J.. The structures and properties of Mg-Al-Zr and Mg-Zn-Zr alloys produced by liquid dynamic compaction [J]. Mater Sci Eng, 1987, 95: 225-236

[25]

HamanaD., NebtiS., HamamdaS.. Effect of the zirconium addition on the microstructure of Al+8WT%Mg alloy [J]. Scrip Mater, 1990, 24: 2059-2064

[26]

VetranoJ. S., BruemmerS. M., PawlowskiL. M., RobertsonI. M.. Influence of the particle size on recrystallization and grain growth in Al-Mg-X alloys [J]. Mater Sci Eng A, 1997, 238: 101-107

[27]

YinZ.-m., PanQ.-l., ZhangY.-h., JiangF.. Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys [J]. Mater Sci Engi A, 2000, 280: 151-155

[28]

OcenasekV., SlamovaM.. Resistance to recrystallization due to Sc and Zr addition to Al-Mg alloys [J]. Mater Charach, 2001, 47: 157-162

[29]

KaibyshevR., MusinF.. Superplastic behavior of an Al-Mg alloy at elevated temperatures [J]. Mater Sci Eng A, 2003, 342: 169-177

[30]

BusoS. J., FilhoA. A., MonteiroW. A.. Characterization by TEM of a supersaturated P/M Al-Mg-Zr alloy after thermal treatments [J]. Materials Science Forum, 2003, 426–432: 4179-4184

[31]

Al-AqeeliN., Mendoza-SuarezG., LabrieA., DrewR. A. L.. Phase evolution of Mg-Al-Zr nanophase alloys prepared by mechanical alloying [J]. J All Comp, 2005, 400: 96-99

[32]

HazeltonL. E.. The effect of composition and milling conditions on the structure of mechanically alloyed Mg-Al based alloys [J]. Metall Mater Tran A, 2011, 32: 3099-3108

[33]

EdelsteinA. S., CammarataR. C.Nanomaterials: Synthesis, properties and application [R], 2002Bristol and Philadelphia, PAInstitute of Physics

[34]

GermanR. M.Powder metallurgy science [M], 1994Princeton, NJMetal Powder Industries Federation

[35]

GermanR. M.Sintering theory and practice [M], 1996New YorkJohn Wiley

[36]

OrrùR., LicheriR., MarioA. L., CincottiA., CaoG.. Consolidation/synthesis of materials by electric current activated/assisted sintering [J]. Mater Sci Eng R, 2009, 63: 127-287

[37]

ViswanathanV., LahaT., BalaniK., AgarwalA., SealS.. Challenges and advances in nanocomposite processing techniques [J]. Mater Sci Eng R, 2006, 54: 121-285

[38]

AdachiJ., KurosakiK., UnoM., YamanakaS.. Porosity influence on the mechanical properties of polycrystalline zirconium nitride ceramics [J]. J Nucl Mater, 2006, 358: 106-110

[39]

JinX., GaoL., SunJ.. Preparation of nanostructured Cr1−xTixN ceramics by spark plasma sintering and their properties [J]. Acta Mater, 2006, 54: 4035-4041

[40]

KimY. H., SekinoT., KusunoseT., NakayamaT., NiiharaK., KawaokaH.. Electrical and mechanical properties of K, Ca ionic-conductive silicon nitride ceramics [J]. Ceram Trans, 2005, 165: 31-38

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/