Differential evolution with controlled search direction

Li-yuan Jia , Jian-xin He , Chi Zhang , Wen-yin Gong

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (12) : 3516 -3523.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (12) : 3516 -3523. DOI: 10.1007/s11771-012-1437-z
Article

Differential evolution with controlled search direction

Author information +
History +
PDF

Abstract

A novel and simple technique to control the search direction of the differential mutation was proposed. In order to verify the performance of this method, ten widely used benchmark functions were chosen and the results were compared with the original differential evolution (DE) algorithm. Experimental results indicate that the search direction controlled DE algorithm obtains better results than the original DE algorithm in term of the solution quality and convergence rate.

Keywords

differential evolution / evolutionary algorithm / search direction / numerical optimization

Cite this article

Download citation ▾
Li-yuan Jia, Jian-xin He, Chi Zhang, Wen-yin Gong. Differential evolution with controlled search direction. Journal of Central South University, 2012, 19(12): 3516-3523 DOI:10.1007/s11771-012-1437-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

StornR., PriceK.. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optim, 1997, 11(4): 341-359

[2]

AlatasB., AkinE., ModenarK. A.. Multi-objective differential evolution algorithm for mining numeric association rules [J]. Appl Soft Comput, 2008, 8(1): 646-656

[3]

ChakrabortyU.Advances in Differential Evolution [M], 2008BerlinSpringer-Verlag

[4]

PriceK., StornR., JampinenJ.Differential evolution: A practical approach to global optimization [M], 2005BerlinSpringer-Verlag

[5]

LiuY., NiF.-l., LiuH., XuW.-fu.. Enhancing pose accuracy of space robot by improved differential evolution [J]. Journal of Central South University of Technology, 2012, 19(4): 933-943

[6]

DasS., SuganthanP. N.. Differential evolution: A survey of the state-of-the-art [J]. IEEE Trans. on Evol. Comput, 2011, 15(1): 4-31

[7]

BrestJ., GreinerS., BoskovicB., MernikM., ZumerV.. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J]. IEEE Trans on Evol. Comput, 2006, 10(6): 646-657

[8]

YaoX.-m., LiuY., LinGuo.. Evolutionary programming made faster [J]. IEEE Trans on Evol. Comput, 1999, 3(2): 82-102

[9]

NomanN., IbaH.. Accelerating differential evolution using an adaptive local search [J]. IEEE Trans on Evol Comput, 2008, 12(1): 107-125

[10]

SUGANTHAN P N, HANSEN N, LIANG J J, DEB K. Problem definitions and evaluation criteria for the CEC2005 special session on real-parameter optimization [EB/OL]. [2005-6-14]. http://www.ntu.edu.sg/home/EPNSugan.

[11]

ShawC., WilliamsK., AssassaR.. Patients’ views of a new nurseled continence service [J]. Journal of Clinical Nursing, 2003, 9(4): 574-584.

[12]

GarciaC., LozanoM., HerreraF., MolinaD., S’AnchezM.. Global and local real-coded genetic algorithms based on parent-centric crossover operators [J]. European Journal of Operational Research, 2008, 185(3): 1088-1113

[13]

DasS., AbrahamA., ChakrabortyU. K., KonarA.. Differential evolution using a neighborhood-based mutation operator [J]. IEEE Trans. on Evol Comput, 2009, 13(3): 526-553

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/