Finite element analysis and simulation for cold precision forging of a helical gear
Wei Feng , Lin Hua , Xing-hui Han
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (12) : 3369 -3377.
Finite element analysis and simulation for cold precision forging of a helical gear
To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the billet geometry on the forming load and the deformation uniformity were analyzed by three-dimensional (3D) finite element method (FEM) under the commercial software DEFORM 3D. The billet geometry was optimized to meet lower forming load and better deformation uniformity requirement. Deformation mechanism was studied through the distribution of flow velocity field and effective strain field. The forging experiments of the helical gear were successfully performed using lead material as a model material under the same process conditions used in the FE simulations. The results show that the forming load decreases as the diameter of relief-hole d0 increases, but the effect of d0 on the deformation uniformity is very complicated. The forming load is lower and the deformation is more uniform when d0 is 10 mm.
helical gear / cold precision forging / finite element simulation / relief-hole principle
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
/
| 〈 |
|
〉 |