An efficient adapting virtual intermediate instruction set towards optimized dynamic binary translator (DBT) system

Yin-dong Yang , Hai-bing Guan

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (11) : 3118 -3128.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (11) : 3118 -3128. DOI: 10.1007/s11771-012-1387-5
Article

An efficient adapting virtual intermediate instruction set towards optimized dynamic binary translator (DBT) system

Author information +
History +
PDF

Abstract

A new efficient adapting virtual intermediate instruction set, V-IIS, is designed and implemented towards the optimized dynamic binary translator (DBT) system. With the help of this powerful but previously little-studied component, DBTs can not only get rid of the dependence of machine(s), but also get better performance. From our systematical study and evaluation, experimental results demonstrate that if V-IIS is well designed, without affecting the other optimizing measures, this could make DBT’s performance close to those who do not have intermediate instructions. This study is an important step towards the grand goal of high performance “multi-source” and “multi-target” dynamic binary translation.

Keywords

binary translation / virtual intermediate instruction set / dynamic binary translator (DBT)

Cite this article

Download citation ▾
Yin-dong Yang, Hai-bing Guan. An efficient adapting virtual intermediate instruction set towards optimized dynamic binary translator (DBT) system. Journal of Central South University, 2012, 19(11): 3118-3128 DOI:10.1007/s11771-012-1387-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KEITH A, OLE A. A comparison of software and hardware techniques for x86 virtualization [C]// ASPLOS’ 06. San Jose, CA, USA, 2006: 2–13.

[2]

BANSAL S, AIKEN A. Binary translation using peephole superoptimizers [C]// 8th USENIX Symposium on Operating System Design and Implementation. Berkeley, CA, USA, 2008: 177–192.

[3]

BALA V, DUESTERWALD E, BANERJIA S. Dynamo: a transparent dynamic optimization system [C]// PLDI’00. New York, NY, USA, 2000: 1–12.

[4]

BARAZ L, DEVOR T, ETZION O, GOLDENBERG S, SKALETSKY A, WAND Y, ZEMACH Y. IA-32 execution layer: A two-phase dynamic translator designed to support IA-32 applications on itanium® based systems [C]// Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture, IEEE Computer Society. Washington, USA, 2003: 191–201.

[5]

CHEN W K, LERNER S, CHAIKEN R, GILLIES D M. Mojo: a dynamic optimization system [C]// The 3rd ACMWorkshop on Feedback-Feedback-Directed and Dynamic Optimization (FDDO-3). Monterey, California, USA, 2000: 81–90.

[6]

CifuentesC., EmmerikM. V.. UQBT: Adaptable binary translation at low cost [J]. IEEE Computer, 2000, 33(3): 60-66

[7]

DavidU., CristinaC.. Dynamic binary translation using run-time feedbacks [J]. Science of Computer Programming, 2006, 60(2): 189-204

[8]

GUAN Hai-bing, YANG Yin-dong, CHEN Kai. DistriBit: a distributed dynamic binary translator system for thin client computing [C]// HPDC’10. Chicago, USA, 2010: 684–691.

[9]

HAZELWOOD K, SMITH M D. Generational cache management of code traces in dynamic optimization systems [C]// MICRO’36: Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture, Washington D C, USA, 2003: 169–179.

[10]

ShiH.-h., WangY., GuanH.-b., LiangA.-lei.. An intermediate language level optimization framework for dynamic binary translation [J]. SIGPLAN Notice, 2007, 42(5): 3-9

[11]

BORIN E, WU Y. Characterization of dynamic binary translation overhead [C]// 1st Workshop on Architectural and Microarchitectural Support for Binary Translation. Beijing, China, 2008: 4–13.

[12]

CIFUENTES C, BRIAN L, DAVID U. Walkabout: A retargetable dynamic binary translation framework [R]. SMLI TR-2002-106. Sun Microsystems, Inc., 2002.

[13]

MARK P. Fast machine-adaptable dynamic binary translation [C]// Workshop on Binary Translation, Barcelona, Spain, 2001: 1–10.

[14]

YANG Yin-dong, GUAN Hai-bing, ZHU Er-zhou, YANG Hong-bo, LIU Bo. CrossBit: A multi-sources and multi-targets DBT [C]// Cloud Computing 2010. Lisbon, Portugal, 2010: 41–47.

[15]

BaoY.-c., LiangA.-l., GuanH.-bing.. Design and implementation of CrossBit: Dynamic binary translation infrastructure [J]. Computer Engineering, 2007, 33(23): 100-102

[16]

VIKRAM A, CHRIS L, MICHAEL B, ANAND S, BRIAN G. LLVA: A low-level virtual instruction set architecture [C]// Proceedings of the 36th Annual ACM/IEEE International Symposium on Microarchitecture (MICRO-36), San Diego, USA, 2003: 201–216.

[17]

KeithD. C., LindaT.Engineering a compiler [M], 2004USAMorgan Kaufmann

[18]

SUN Ting-tao, YANG Yin-dong, YANG Hong-bo, GUAN Hai-bing, LIANG A-lei. Return instruction analysis and optimization in dynamic binary translation [C]// FCST 2009. Shanghai, China, 2009: 435–440.

[19]

NICHOLAS N, JULIAN S. Valgrind: A framework for heavyweight dynamic binary instrumentation [C]// Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design and Implementation. New York, USA, 2007: 89–100.

[20]

FABRICE B. QEMU: A fast and portable dynamic translator [C]// Proceedings of the USENIX Annual Technical Conference. Berkeley, CA, USA, 2005: 41–46.

[21]

JAMES D, BRIAN G, JOHN B, RICHARD J, THOMAS K, ALESANDER K, JIM M. The Transmeta Code Morphing R Software: Using speculation, recovery, and adaptive retranslation to address real-life challenges [C]// CGO’02. Washington D C, USA, 2003: 15–24.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/