Multiple templates-based homology modeling and docking analysis of angiotensin II type 1 receptor

Yun-feng Xie , Yu-ren Jiang , Ya-fei Pan , Dan Chen , Chuan-jun Li

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (11) : 3033 -3039.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (11) : 3033 -3039. DOI: 10.1007/s11771-012-1375-9
Article

Multiple templates-based homology modeling and docking analysis of angiotensin II type 1 receptor

Author information +
History +
PDF

Abstract

Using the latest reported homologous Chemokine receptors (PDB ID: 3ODU, 3OE0 and 3OE6) as templates, twenty models of angiotensin II (Ang II) type 1 (AT1) receptor (known as p30556) were generated by multiple templates homology modeling. According to the results of the initial validation of these twenty models, the model 0020 was finally chosen as the best one for further studies. Then, a 2 ns molecular dynamic (MD) simulation for model 0020 was conducted in normal saline (0.9%, w/V) under periodical boundary conditions, which was followed by docking studies of model 0020 with several existing AT1 receptor blockers (ARBs). The docking results reveal that model 0020 possesses good affinities with these docked ARBs which are in accordance with both the IC50 inhibitor values and their curative effects. The results also show more potent interactions between the model 0020 and its ARBs than those of ever reported results, such as hydrogen bonds, hydrophobic interactions, and especially cation-π interactions and π-π interactions which have never been reported before. This may reveal that the structure of the model 0020 is quite close to its real crystal structure and the model 0020 may have the potential to be used for structure based drug design.

Keywords

angiotensin II type 1 receptor / docking / homology modeling / molecular dynamics

Cite this article

Download citation ▾
Yun-feng Xie, Yu-ren Jiang, Ya-fei Pan, Dan Chen, Chuan-jun Li. Multiple templates-based homology modeling and docking analysis of angiotensin II type 1 receptor. Journal of Central South University, 2012, 19(11): 3033-3039 DOI:10.1007/s11771-012-1375-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LazichI., BakrisG. L.. Newer renin-angiotensin-aldosterone system blocker combinations: Is there an advantage? [J]. Curr Opin Nephrol Hypertens, 2011, 20(5): 471-475

[2]

VyasV. K., GhateM.. Substituted benzimidazole derivatives as angiotensin II-AT1 receptor antagonist: A review [J]. Mini Rev Med Chem, 2010, 10(14): 1366-1384

[3]

IsmailM. A., BarkerS., Abou El-ellaD., AbouzidK. A., ToubarR. A., ToddM. H.. Design and synthesis of new tetrazolyl- and carboxy-biphenylylmethyl-quinazolin-4-one derivatives as angiotensin II AT1 receptor antagonists [J]. J Med Chem, 2006, 49(5): 1526-1535

[4]

CappelliA., Pericot Mohr GlG., GallelliA., RizzoM., AnziniM., VomeroS.. Design, synthesis, structural studies, biological evaluation, and computational simulations of novel potent AT(1) angiotensin II receptor antagonists based on the 4-phenylquinoline structure [J]. J Med Chem, 2004, 47(10): 2574-2586

[5]

GoldfeldD. A., ZhuK., BeumingT., FriesnerR. A.. Successful prediction of the intra- and extracellular loops of four G-protein-coupled receptors [J]. Proc Natl Acad Sci USA, 2011, 108(20): 8275-8280

[6]

VilarS., FerinoG., PhatakS. S., BerkB., CavasottoC. N., CostanziS.. Docking-based virtual screening for ligands of G protein-coupled receptors: Not only crystal structures but also in silico models [J]. J Mol Graph Model, 2011, 29(5): 614-623

[7]

TapaneeyakomS., GoddardA. D., OatesJ., WillisC. L., WattsA.. Solution- and solid-state NMR studies of GPCRs and their ligands [J]. Biochim Biophys Acta, 2011, 1808(6): 1462-1475

[8]

MugumbateG., JacksonG. E., van der SpoelD.. Open conformation of adipokinetic hormone receptor from the malaria mosquito facilitates hormone binding [J]. Peptides, 2011, 32(3): 553-559

[9]

KatritchV., RuedaM., LamP. C., YeagerM., AbagyanR.. GPCR 3D homology models for ligand screening: Lessons learned from blind predictions of adenosine A2a receptor complex [J]. Proteins, 2010, 78(1): 197-211

[10]

LiY. Y., HouT. J., GoddardW. A.III. Computational modeling of structure-function of g protein-coupled receptors with applications for drug design [J]. Curr Med Chem, 2010, 17(12): 1167-1180

[11]

YeagleP. L., AlbertA. D.. G-protein coupled receptor structure [J]. Biochim Biophys Acta, 2007, 1768(4): 808-824

[12]

CavasottoC. N., PhatakS. S.. Homology modeling in drug discovery: Current trends and applications [J]. Drug Discov Today, 2009, 14(13/14): 676-683

[13]

SokkarP., MohandassS., RamachandranM.. Multiple templates-based homology modeling enhances structure quality of AT1 receptor: Validation by molecular dynamics and antagonist docking [J]. J Mol Model, 2011, 17(7): 1565-1577

[14]

PatnyA., DesaiP. V., AveryM. A.. Ligand-supported homology modeling of the human angiotensin II type 1 (AT(1)) receptor: Insights into the molecular determinants of telmisartan binding [J]. Proteins, 2006, 65(4): 824-842

[15]

YamitzkyT., LevitA., NivM. Y.. Homology modeling of G-protein-coupled receptors with X-ray structures on the rise [J]. Curr Opin Drug Discov Devel, 2010, 13(3): 317-325

[16]

WuB.-l., ChienE. Y., MolC. D., FenaltiG., LiuW., KatritchV., AbagyanR., BroounA., WellsP., BiF. C., HamelD. J., KuhnP., HandelT. M., CherezovV., StevensR. C.. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists [J]. Science, 2010, 330(6007): 1066-1071

[17]

FlowerD. R.. Modelling G-protein-coupled receptors for drug design [J]. Biochim Biophys Acta, 1999, 1422(3): 207-234

[18]

NikiforovichG. V., MarshallG. R.. 3D model for TM region of the AT-1 receptor in complex with angiotensin II independently validated by site-directed mutagenesis data [J]. Biochem Biophys Res Commun, 2001, 286(5): 1204-1211

[19]

GuexN., PeitschM. C.. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling [J]. Electrophoresis, 1997, 18(15): 2714-2723

[20]

SaliA., BlundellT. L.. Comparative protein modelling by satisfaction of spatial restraints [J]. J Mol Biol, 1993, 234(3): 779-815

[21]

Lindorff-LarsenK., PianaS., PalmoK., MaragakisP., KleoeisJ. L., DrorR. O., ShawD. E.. Improved side-chain torsion potentials for the Amber ff99SB protein force field [J]. Proteins, 2010, 78(8): 1950-1958

[22]

HessB., KutznerC., van der SpoelD., LindahlE.. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation [J]. Journal of Chemical Theory and Computation, 2008, 4(3): 435-447

[23]

BussiG., DonadioD., ParrinelloM.. Canonical sampling through velocity rescaling [J]. J Chem Phys, 2007, 126(1): 014101

[24]

MiyamotoS., KollmanP. A.. SETTLE: An analytical version of the SHAKE and RATTLE algorithms for rigid water models [J]. J Comp Chem, 1992, 13(8): 952-962

[25]

HessB., BekkerH., BerendsenH. J. C., FraaijeJ. G. E. M.. LINCS: A linear constraint solver for molecular simulations [J]. J Comb Chem, 1997, 18(12): 1463-1472

[26]

EssmanU., PerelaL., BerkowitzM., DardenT., LeeH., PedersenL. G.. A smooth particle mesh Ewald method [J]. J Chem Phys, 1995, 103(19): 8577-8592

[27]

JonesG., WillettP., GlenR. C., LeachA. R., TaylorR.. Development and validation of a genetic algorithm for flexible docking [J]. J Mol Biol, 1997, 267(3): 727-748

[28]

OhnoK., AmanoY., KakutaH., NiimiT., TakakuraS., OritaM., MiyataK., SakashitaH., TakeuchiM., KomuroI., HigakiJ., HoriuchiM., Kim-MitsuyamaS., MoriY., MorishitaR., YamagishiS.. Unique “delta lock” structure of telmisartan is involved in its strongest binding affinity to angiotensin II type 1 receptor [J]. Biochem Biophys Res Commun, 2011, 404(1): 434-437

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/