Esterification of different FFAs with methanol by CERP/PES hybrid catalytic membrane for biodiesel production

Hong-lei Zhang , Jin-cheng Ding , Zeng-dian Zhao

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (10) : 2895 -2900.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (10) : 2895 -2900. DOI: 10.1007/s11771-012-1356-z
Article

Esterification of different FFAs with methanol by CERP/PES hybrid catalytic membrane for biodiesel production

Author information +
History +
PDF

Abstract

Cation ion-exchange resin particles (CERP)/polyethersulfone (PES) hybrid catalytic membranes were prepared by immerse phase inversion for the esterification of different free fatty acids (FFAs) (such as, dodecanoic acid, tetradecanoic acid, hexadecanoic acid and octadecadienoic acid) with methanol. The membranes were characterized by SEM, ion-exchange capacity and swelling degree test. It is found that dodecanoic acid has the highest FFAs conversion among the four acids for its stronger acidic and reactivity. Different effects of membrane annealing temperature, reaction temperature, molar ratio of methanol to FFAs and catalytic membrane loading on the esterification were investigated by the esterification of dodecanoic acid with methanol. The dodecanoic acid conversion reaches 97.5% under the optimal condition when the esterification reaction lasted for 8 h.

Keywords

biodiesel / methanol / catalytic membrane / esterification / free fatty acids (FFAs) / waste cooking oil (WCO)

Cite this article

Download citation ▾
Hong-lei Zhang, Jin-cheng Ding, Zeng-dian Zhao. Esterification of different FFAs with methanol by CERP/PES hybrid catalytic membrane for biodiesel production. Journal of Central South University, 2012, 19(10): 2895-2900 DOI:10.1007/s11771-012-1356-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WangY., WuH., ZongM.-hua.. Improvement of biodiesel production by lipozyme TLIM-catalyzed methanolysis using response surface methodology and acylmigration enhancer [J]. Bioresource Technology, 2008, 99(15): 7232-7237

[2]

GomesM. C. S., ArroyoP. A., PereiraN. C.. Biodiesel production from degummed soybean oil and glycerol removal using ceramic membrane [J]. Journal of Membrane Science, 2011, 378(1/2): 453-461

[3]

WangY., OuS.-y., LiuP.-z., XueF., TangS.-ze.. Comparison of two different processes to synthesize biodiesel by waste cooking oil [J]. Journal of Molecular Catalysis A: Chemical, 2006, 252(1/2): 107-112

[4]

ZygmuntK., ElzbietaA., TeresaC., LauraS.. The use of statistical methods to evaluate winter oilseed rape doubled haploids for industrial purposes [J]. Industrial Crops and Products, 2008, 27(3): 348-353

[5]

LouW.-y., ZongM.-h., DuanZ.-qun.. Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts [J]. Bioresource Technology, 2008, 99(8): 8752-8758

[6]

DingJ.-c., HeB.-q., LiJ.-xin.. Cation ion-exchange resin/polyethersulfone hybrid catalytic membrane for biodiesel production [J]. Journal of Biobased Materials and Bioenergy, 2011, 5(7): 85-91

[7]

KumaranP., MazliniN., HusseinI., NazrainM., KhairulM.. Technical feasibility studies for Langkawi WCO (waste cooking oil) derived-biodiesel [J]. Energy, 2011, 36(3): 1386-1393

[8]

HalimS. F. A., KamaruddinA. H., FernadoW. J. N.. Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: Optimization using response surface methodology (RSM) and mass transfer studies [J]. Bioresource Technology, 2009, 100(2): 710-716

[9]

PhanA. N., PhanT. M.. Biodiesel production from waste cooking oils [J]. Fuel, 2008, 87(17/18): 3490-3496

[10]

FengY.-h., HeB.-q., CaoY.-h., LiJ.-x., LiuM., YanF., LiangX.-ping.. Biodiesel production using cation-exchange resin as heterogeneous catalyst [J]. Bioresource Technology, 2010, 101(5): 1518-1521

[11]

ZhuM.-l., HeB.-q., ShiW.-y., FengY.-h., DingJ.-c., LiJ.-x., ZengF.-di.. Preparation and characterization of PSSA/PVA catalytic membrane for biodiesel production [J]. Fuel, 2010, 89(9): 2299-2304

[12]

ShiW.-y., HeB.-q., DingJ.-c., LiJ.-x., YanF., LiangX.-ping.. Preparation and characterization of the organic-inorganic hybrid membrane for biodiesel production [J]. Bioresource Technology, 2010, 101(5): 1501-1505

[13]

ShiW.-y., HeB.-q., LiJ.-xin.. Esterification of acidic oil with methanol by SPES/PES catalytic membrane [J]. Bioresource Technology, 2011, 102(9): 5389-5393

[14]

CaetanoC. S., GuerreiroL., FonsecaI. M., RamosA. M., VitalJ., CastanheiroJ. E.. Esterification of fatty acids to biodiesel over polymers with sulfonic acid groups [J]. Applied Catalysis. A: General, 2009, 359(1/2): 41-46

[15]

KoyamaK., OkadaM., NishimuraM.. An interpolymer anionic composite reverse osmosis membrane derived from poly (vinyl alcohol) and poly (styrene sulfonic acid) [J]. Journal of Applied Polymer Science, 1982, 27(8): 2783-2789

[16]

RhimJ. W., ParkH. B., LeeC. S., JunJ. H., KimD. S., LeeY. M.. Crosslinked poly (vinyl alcohol) membranes containing sulfonic acid group: Proton and methanol transport through membranes [J]. Journal of Membrane Science, 2004, 238(1/2): 143-151

[17]

RamadhasA. S., JayarajS., MuraleedharanC.. Biodiesel production from high FFA rubber seed oil [J]. Fuel, 2005, 84(4): 335-340

[18]

GanM.-y., PanD., MaL., YueE., HongJ.-bin.. The kinetics of the esterification of free fatty acids in waste cooking oil using Fe2(SO4)3/C catalyst [J]. Chinese Journal of Chemical Engineering, 2009, 17(1): 83-87

[19]

FengY.-h., ZhangA.-q., LiJ.-x., HeB.-qiao.. A continuous process for biodiesel production in a fixed bed reactor packed with cation-exchange resin as heterogeneous catalyst [J]. Bioresource Technology, 2011, 102(3): 3607-3609

[20]

BasndebS., ManM. S.. Reaction of dicyclopentadiene with formic acid and chloroacetic acid with and without cation-exchange resins as catalysts [J]. Reactive and Functional Polymers, 1997, 34(2/3): 161-173

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/