Synchronization of perturbed chaotic systems via nonlinear control

Ling Guo , Xiao-hong Nian , Huan Pan

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (10) : 2803 -2809.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (10) : 2803 -2809. DOI: 10.1007/s11771-012-1345-2
Article

Synchronization of perturbed chaotic systems via nonlinear control

Author information +
History +
PDF

Abstract

Chaos synchronization of systems with perturbations was investigated. A generic nonlinear control scheme to realize chaos synchronization of systems was proposed. This control scheme is flexible and practicable, and gives more freedom in designing controllers in order to achieve some desired performance. With the aid of Lyapunov stability theorem and partial stability theory, two cases were presented: 1) Chaos synchronization of the system without perturbation or with vanishing perturbations; 2) The boundness of the error state for the system with nonvanishing perturbations satisfying some conditions. Finally, several simulations for Lorenz system were provided to verify the effectiveness and feasibility of our method. Compared numerically with the existing results of linear feedback control scheme, the results are sharper than the existing ones.

Keywords

chaotic system / synchronization / perturbations / nonlinear control scheme / linear feedback scheme

Cite this article

Download citation ▾
Ling Guo, Xiao-hong Nian, Huan Pan. Synchronization of perturbed chaotic systems via nonlinear control. Journal of Central South University, 2012, 19(10): 2803-2809 DOI:10.1007/s11771-012-1345-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

OttE., GrebogiC., YorkeJ. A.. Controlling chaos [J]. Phys Rev Lett, 1990, 64(11): 1196-1199

[2]

PecoraL. M., CarrollT. L.. Synchronization in chaotic systems [J]. Phys Rev Lett, 1990, 64: 821-824

[3]

WangB.-x., GuanZ.-Hong.. Chaos synchronization in general complex dynamical networks with coupling delays [J]. Nonlinear Analysis: Real World Applications, 2010, 11(3): 1925-1932

[4]

SalariehH., AlastyA.. Adaptive chaos synchronization in Chua’s systems with noisy parameters [J]. Mathematics and Computers in Simulation, 2008, 79(3): 233-241

[5]

LinD., WangX.-y., NianF.-z., ZhangY.-lei.. Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems [J]. Neurocomputing, 2010, 73(16/17/18): 2873-2881

[6]

CheY.-q., WangJ., CuiS.-g., DengB., WeiX.-l., ChanW.-l., TsangK.-ming.. Chaos synchronization of coupled neurons via adaptive sliding mode control [J]. Nonlinear Analysis: Real World Applications, 2011, 12(6): 3199-3206

[7]

LiH.-q., LiaoX.-f., LiC.-d., LiC.-jie.. Chaos control and synchronization via a novel chatter free sliding mode control strategy [J]. Neurocomputing, 2011, 74(17): 3212-3222

[8]

YauH.-t., ShiehS. H.. Chaos synchronization using fuzzy logic controller [J]. Nonlinear Analysis: Real World Applications, 2008, 9(4): 1800-1810

[9]

JiangG.-p., TangW. K. S.. A global chaos synchronization criterion for coupled chaotic systems via unidirectional linear error feedback approach [J]. Int J Bifurcat Chaos, 2002, 12(10): 2239-2253

[10]

GeZ.-m., ChenY.-sheng.. Synchronization of unidirectional coupled chaotic systems via partial stability [J]. Chaos Solitons Fract, 2004, 21(1): 101-111

[11]

WuX.-f., ChenG.-r., CaiJ.-ping.. Chaos synchronization of the master-slave generalized Lorenz systems via linear state error feedback control [J]. Phys D, 2007, 229(1): 52-80

[12]

WuX.-f., ChenG.-rong.. Synchronization of mutual coupled chaotic systems via partial stability theory [J]. Chaos Solitons Fract, 2007, 34(3): 787-794

[13]

ChenM.-y., HanZ.-zhi.. Controlling and synchronizing chaotic Genesio system via nonlinear feedback control [J]. Chaos Solitons Fract, 2003, 17(4): 709-716

[14]

HuangL.-l., FengR.-p., WangMao.. Synchronization of chaotic systems via nonlinear control [J]. Phys Lett A, 2004, 320(4): 271-275

[15]

ZhangQ.-j., LuJ.-an.. Chaos synchronization of a new chaotic system via nonlinear control [J]. Chaos Solitons Fract, 2008, 37(1): 175-179

[16]

ParkJ. H.. Chaos synchronization of a chaotic system via nonlinear control [J]. Chaos Solitons Fract, 2005, 25(3): 579-584

[17]

ChenH.-keng.. Global chaos synchronization of new chaotic systems via nonlinear control [J]. Chaos Solitons Fract, 2005, 23(4): 1245-1251

[18]

ZhangH., MaX.-k., XueB.-ling.. A novel boundedness-based linear and nonlinear approach to control chaos [J]. Chaos Solitons Fract, 2004, 22(2): 433-442

[19]

ParkJ. H.. Controlling chaotic systems via nonlinear feedback control [J]. Chaos Solitons Fract, 2005, 23(3): 1049-1054

[20]

ChenH.-h., SheuG.-j., LinY.-l., ChenC.-shiung.. Chaos synchronization between two different chaotic systems via nonlinear feedback control [J]. Nonlinear Analysis, 2009, 70(12): 4393-4401

[21]

YangL.-x., ChuY.-d., ZhangJ.-g., LiX.-f., ChangY.-xiang.. Chaos synchronization in autonomous chaotic system via hybrid feedback control [J]. Chaos Solitons Fract, 2009, 41(1): 214-223

[22]

LuW.-l., ChenT.-ping.. Synchronization analysis of linearly coupled networks of discrete time systems [J]. Phys D, 2004, 198(1/2): 148-168

[23]

ChenT.-p., ZhuZ.-miao.. Exponential synchronization of nonlinear coupled dynamical networks [J]. Int J Bifurcat Chaos, 2007, 17(3): 999-1005

[24]

BarbarossaS., ScutariG.. Decentralized maximum-likelihood estimation for sensor networks composed of nonlinearly coupled dynamical systems [J]. IEEE Transactions on Signal Process, 2007, 55(7): 3456-3470

[25]

LiuX.-w., ChenT.-ping.. Synchronization analysis for nonlinearly-coupled complex networks with an asymmetrical coupling matrix [J]. Phys A, 2008, 387(16/17): 4429-4439

[26]

HassanK. K.Nonlinear system [M], 1996NJEnglewood Cliffs339-372

[27]

Lopez-mancillaD., Cruz-hernandezC.. Output synchronization of chaotic systems under nonvanishing perturbations [J]. Chaos Solitons Fract, 2008, 37(4): 1172-1186

[28]

OziranerA. S.. On Stability of motion relative to a part of variables under constantly acting perturbations [J]. PMM, 1981, 45(3): 304-310

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/