Effect of pyrolysis temperature on properties of ACF/CNT composites

Li-ping Wang , Zhu-cheng Huang , Ming-yu Zhang , Xing-sheng Liao

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (10) : 2746 -2750.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (10) : 2746 -2750. DOI: 10.1007/s11771-012-1336-3
Article

Effect of pyrolysis temperature on properties of ACF/CNT composites

Author information +
History +
PDF

Abstract

Activated carbon fiber/carbon nanotube (ACF/CNT) composites were fabricated by chemical vapor deposition (CVD) process. The effects of pyrolysis temperature on properties of ACF/CNT composites, including BET specific surface area, mass increment rate and adsorption efficiency for rhodamine B in solution, were investigated by scanning electron microscopy. The results show that the pyrolysis temperature is a key factor affecting the qualities of ACF/CNT composites. The mass increment rate and BET specific surface area sharply decrease with the increase of pyrolysis temperatures from 550 °C to 850 °C and the minimum diameter of CNTs appears at 750 °C. The maximum adsorption efficiency of ACF/CNT composites for rhodamine B is obtained at 650 °C. ACF/CNT composites are expected to be useful in adsorption field.

Keywords

ACF/CNT composites / pyrolysis temperature / chemical vapor deposition / BET specific surface area / adsorption

Cite this article

Download citation ▾
Li-ping Wang, Zhu-cheng Huang, Ming-yu Zhang, Xing-sheng Liao. Effect of pyrolysis temperature on properties of ACF/CNT composites. Journal of Central South University, 2012, 19(10): 2746-2750 DOI:10.1007/s11771-012-1336-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChiangH.-m., ChenT.-c., PanS.-d., ChiangH.-lung.. Adsorption characteristics of Orange II and Chrysophenine on sludge adsorbent and activated carbon fibers [J]. Journal of Hazardous Materials, 2009, 161(2/3): 1384-1390

[2]

HattoriY., NoguchiN., OkinoF., TouharaH., NakahigashiY., UtsumiS., TanakaH., KanohH., KanekoK.. Defluorination-enhanced hydrogen adsorptivity of activated carbon fibers [J]. Carbon, 2007, 45(7): 1391-1395

[3]

XieZ.-y., LiJ.-p., ZhaoN., WangF., PengW.-c., MaoB.-y., XiaoF.-k., WeiW., SunY.-han.. The adsorption of carbon disulfide on activated carbon fibers [J]. Carbon, 2010, 48(1): 315-316

[4]

JungM.-J., KimJ. W., ImJ. S., ParkS.-J., LeeY.-S.. Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination [J]. Journal of Industrial and Engineering Chemistry, 2009, 15(3): 410-414

[5]

LeeY. S., KimY. H., HongJ. S., SuhJ. K., ChoG. J.. The adsorption properties of surface modified activated carbon fibers for hydrogen storages [J]. Catalysis Today, 2007, 120(3/4): 420-425

[6]

LiB.-z., LeiZ.-p., ZhangX.-h., HuangZ.-gen.. Adsorption of simple aromatics from aqueous solutions on modified activated carbon fibers [J]. Catalysis Today, 2010, 158(3/4): 515-520

[7]

HuangH.-c., YeD.-q., HuangB.-chun.. Nitrogen plasma modification of viscose-based activated carbon fibers [J]. Surface and Coatings Technology, 2007, 201(24): 9533-9540

[8]

ZhaoJ.-g., LiuL., GuoQ.-g., ShiJ.-l., ZhaiG.-t., SongJ.-r., LiuZ.-jun.. Growth of carbon nanotubes on the surface of carbon fibers [J]. Carbon, 2008, 46(2): 380-383

[9]

FeldmanA. K., SteigerwaldM. L., GuoX., NuckollsC.. Molecular electronic devices based on single-walled carbon nanotube electrodes [J]. Accounts of Chemical Research, 2008, 41(12): 1731-1741

[10]

GanesanY., PengC., LuY., LoyaP. E., MoloneyP., BarreraE., YakobsonB. I., TourJ., BallariniR., LouJ.. Interface toughness of carbon nanotube reinforced epoxy composites [J]. ACS Applied Materials & Interfaces, 2011, 3(2): 129-134

[11]

GethardK., Sae-khowO., MitraS.. Water desalination using carbon-nanotube-enhanced membrane distillation [J]. ACS Applied Materials & Interfaces, 2010, 3(2): 110-114

[12]

RenL., PintC. L., BooshehriL. G., RiceW. D., WangX., HiltonD. J., TakeyaK., KawayamaI., TonouchiM., HaugeR. H., KonoJ.. Carbon nanotube terahertz polarizer [J]. Nano Letters, 2009, 9(7): 2610-2613

[13]

PanB., XingB.. Adsorption mechanisms of organic chemicals on carbon nanotubes [J]. Environmental Science & Technology, 2008, 42(24): 9005-9013

[14]

MathurR. B., ChatterjeeS., SinghB. P.. Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties [J]. Composites Science and Technology, 2008, 68(7/8): 1608-1615

[15]

YanX. M., ShiB. Y., LuJ. J., FengC. H., WangD. S., TangH. X.. Adsorption and desorption of atrazine on carbon nanotubes [J]. Journal of Colloid and Interface Science, 2008, 321(1): 30-38

[16]

DanafarF., Fakhru’l-RaziA., SallehM. A. M., BiakD. R. A.. Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes-A review [J]. Chemical Engineering Journal, 2009, 155(1/2): 37-48

[17]

ChenL., LiuH.-t., YangK.-l., WangJ.-k., WangX.-lai.. The effect of reaction temperature on the diameter distribution of carbon nanotubes grown from ethylene decomposition over a Co-La-O catalyst [J]. Materials Chemistry and Physics, 2008, 112(2): 407-411

[18]

NiuZ.-q., FangYan.. Effect of temperature for synthesizing single-walled carbon nanotubes by catalytic chemical vapor deposition over Mo-Co-MgO catalyst [J]. Materials Research Bulletin, 2008, 43(6): 1393-1400

[19]

TanS. M., ChaiS. P., LiuW. W., MohamedA. R.. Effects of FeOx, CoOx, and NiO catalysts and calcination temperatures on the synthesis of single-walled carbon nanotubes through chemical vapor deposition of methane [J]. Journal of Alloys and Compounds, 2009, 477(1/2): 785-788

[20]

DangC., WangT.-zhi.. Study on effects of substrate temperature on growth and structure of alignment carbon nanotubes in plasma-enhanced hot filament chemical vapor deposition system [J]. Applied Surface Science, 2006, 253(2): 904-908

[21]

TibbettsG. G.. Why are carbon filaments tubular [J]. Journal of Crystal Growth, 1984, 66(3): 632-638

[22]

SureshkumarM. V., NamasivayamC.. Adsorption behavior of Direct Red 12B and Rhodamine B from water onto surfactant-modified coconut coir pith [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1/2/3): 277-283

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/