Health condition monitoring with multiple physical signals in tensile test for double-material friction welding

Yu-bo Zhang , Bin-shi Xu , Hai-dou Wang , Da-xiang Yang , Li-na Zhu

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (10) : 2705 -2711.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (10) : 2705 -2711. DOI: 10.1007/s11771-012-1330-9
Article

Health condition monitoring with multiple physical signals in tensile test for double-material friction welding

Author information +
History +
PDF

Abstract

The manifold physical signals including micro resistance, infrared thermal signal and acoustic emission signal in the tensile test for double-material friction welding normative samples were monitored and collected dynamically by TH2512 micro resistance measuring apparatus, flir infrared thermal camera and acoustic emission equipment which possesses 18 bit PCI-2 data acquisition board. Applied acoustic emission and thermal infrared NDT (non-destructive testing) means were used to verify the feasibility of using resistance method and to monitor dynamic damage of the samples. The research of the dynamic monitoring system was carried out with multi-information fusion including resistance, infrared and acoustic emission. The results show that the resistance signal, infrared signal and acoustic emission signal collected synchronously in the injury process of samples have a good mapping. Electrical, thermal and acoustic signals can more accurately capture initiation and development of micro-defects in the sample. Using dynamic micro-resistance method to monitor damage is possible. The method of multi-information fusion monitoring damage possesses higher reliability, which makes the establishing of health condition diagnosing and early warning platform with multiple physical information monitoring possible.

Keywords

micro resistance / pictorial infrared photography / acoustic emission / nondestructive testing / dynamic monitoring

Cite this article

Download citation ▾
Yu-bo Zhang, Bin-shi Xu, Hai-dou Wang, Da-xiang Yang, Li-na Zhu. Health condition monitoring with multiple physical signals in tensile test for double-material friction welding. Journal of Central South University, 2012, 19(10): 2705-2711 DOI:10.1007/s11771-012-1330-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SeokC. S., KooJ. M.. Evaluation of material degradation of 1Cr-1Mo-0.25V steel by ball indentation and resistivity [J]. Journal of Materials Science, 2006, 41: 1081-1087

[2]

StarkeP., WaltherF., EiflerD.. Fatigue assessment and fatigue life calculation of quenched and tempered SAE 4140 steel based on stress-strain hysteresis, temperature and electrical resistance measurements [J]. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30(11): 1044-1051

[3]

StarkeP., EiflerD.. Fatigue assessment and fatigue life calculation of metals on the basis of mechanical hysteresis, temperature, and resistance data: Extended version of the plenary lecture at the international conference low cycle fatigue [J]. Materials Testing, 2009, 51(5): 261-268

[4]

JiangS.-fang.Infrared thermal wave imaging for identifing different subsurface defects [D], 2006BeijingThe Capital Normal University8-8

[5]

ZhongQ.-p., ZhaoZ.-hua.Fracture [M], 2005BeijingHigher Education Publishing Company176

[6]

SunB.-x., GuoY.-mu.. Prediction of high-cycle fatigue life based on resistance changes [J]. Journal of Mechanical Strength, 2002, 24(4): 81-85

[7]

SunB.-x., GuoY.-mu.. A high-cycle fatigue accumulation model based on electrical resistance for structural steels [J]. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30(11): 1052-1062

[8]

YoshinobuS., KeikoO., AkiraT., MasahitoU.. Detectability of bearing failure of composite bolted joints by electric resistance change method [J]. Key Engineering Materials, 2006, 321: 957-962

[9]

TianShi.Material physics characteristic [M], 2004BeijingBeijing University of Aeronautics and Aerospace Press41

[10]

LiuZ.-en.Material science [M], 2006BeijingNorthwestern Polytechnic University Press2

[11]

BhallaK. S., ZenhderA. T., HanX.. Thermomechanics of slow stable crack growth: Closing the loop between experiments and computational modeling [J]. Engineering Fracture Mechanics, 2003, 70: 2439-2458

[12]

GuduruP. R.An investigation of dynamic failure events in steels using full field high-speed infrared thermography and high-speed photography [D], 2001Los AngelesCalifornia Institute of Technology

[13]

RancN., WagnerD., ParisP. C.. Study of thermal effects associated with crack propagation during very high-cycle fatigue tests [J]. Acta Materialia, 2008, 56(15): 4012-4021

[14]

CharkalukE., ConstantinescuA.. Estimation of the mesoscopic thermoplastic dissipation in high-cycle fatigue [J]. Comptes Rendus Mecanique, 2006, 334(6): 373-379

[15]

AmiriM., KhonsanM. M.. Rapid determination of fatigue failure based on temperature evolution: Fully reversed bending load [J]. International Journal of Fatigue, 2010, 32(2): 382-389

[16]

XiaY.-f., LiH.-ling.. Application of acoustice mission(AE) technique in crack monitor during fatigue test of pump rod [J]. Material and Metallurgy Academic Journal, 2007, 6(1): 60-61

[17]

DrummondG., WatsonJ. F., AcamleyP. P.. Acoustic emission from wire ropes during proof load and fatigue testing [J]. NDT & E International, 2007, 40(1): 94-101

[18]

SongW.-xi.Metallography [M], 1980BeijingMetallurgy Industry University Publishing Company183

[19]

LiuG.-g., ChengQ.-c., ZhouL.-h., XueZ.-y., XuG.-zhen.. Acoustic emission monitoring of tensile test of A3 steel plate specimen [J]. Shanghai Metals, 2003, 253: 33-37

[20]

RobertsT. M., TalebzadehM.. Acoustic emission monitoring of fatigue crack propagation [J]. Journal of Constructional Steel Research, 2003, 59: 695-712

[21]

GrondelS., DelebarreC., AssaadJ.. Fatigue crack monitoring of riveted aluminium strap joints by Lamb wave analysis and acoustic emission measurement techniques [J]. NDT & E International, 2002, 35(3): 137-146

[22]

ZhuB., WangC.-g., CaiHua.. Acoustic emission characteristic and relative research of material fracture toughness [J]. Physic Academic Journal, 2003, 52(8): 1960-1964

[23]

EnnaceurC., LaksimiA., HerveC.. Monitoring crack growth in pressure vessel steels by the acoustic emission technique and the method of potential difference [J]. International Journal of Pressure Vessels and Piping, 2006, 83(3): 197-204

[24]

RavishankarS. R., MurthyC. R. L.. Application of acoustic emission in drilling of composite laminates[J]. NDT & E International, 2000, 33: 429-435

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/