DEM simulation of liquefaction for cohesionless media at grain scale

Guo-bin Gong , Xiao-xiong Zha

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (9) : 2643 -2649.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (9) : 2643 -2649. DOI: 10.1007/s11771-012-1322-9
Article

DEM simulation of liquefaction for cohesionless media at grain scale

Author information +
History +
PDF

Abstract

Simulations of undrained tests were performed in a periodic cell using three dimensional (3D) discrete element method (DEM) program TRUBAL. The effective undrained stress paths are shown to be qualitatively similar to published physical experimental results of cohesionless media such as sand. Liquefaction and temporary liquefaction are observed for very loose samples and medium loose samples, respectively. A new micromechanical parameter is proposed to identify whether liquefaction or temporary liquefaction occurs in terms of a redundancy factor. The relationship of redundancy factor and average coordination number is derived theoretically. It is demonstrated that the phase transition dividing the solid-like behaviour and liquid-like behaviour is associated with a redundancy factor of 1, which corresponds to an average coordination number slightly above 4.

Keywords

simulation / discrete element / TRUBAL / liquefaction / redundancy factor / coordination number

Cite this article

Download citation ▾
Guo-bin Gong, Xiao-xiong Zha. DEM simulation of liquefaction for cohesionless media at grain scale. Journal of Central South University, 2012, 19(9): 2643-2649 DOI:10.1007/s11771-012-1322-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BishopA. W.. The strength of soils as engineering materials [J]. Sixth Rankine Lecture, Geotechnique, 1966, 16(2): 89-130

[2]

BISHOP A W. Shear strength parameters for undisturbed and remoulded soil specimens. Stress-strain behaviour of soils [C]// Parry R H G. Proc Roscoe Memorial Symp. Cambridge, 1971: 3–58.

[3]

CastroG.Liquefaction of sands. (soil mechanics series No. 81) [D], 1969CambridgeHarvard University

[4]

PoulosS. J.. The steady state of deformation [J]. Journal of Geotechnical Engineering, ASCE, 1981, 17(5): 553-562

[5]

Alarcon-GuzmanA., LeonardsG. A., ChameauJ. L.. Undrained monotonic and cyclic strength of sand [J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(10): 1089-1109

[6]

IshiharaK., TatsuokaF., YasudaS.. Undrained deformation and liquefaction of sand under cyclic stresses [J]. Soils and Foundations, 1975, 15(1): 29-44

[7]

BeenK., JefferiesM. G., HacheyJ.. The critical state of sands [J]. Geotechnique, 1991, 41(3): 365-181

[8]

ZhangH.-m., GargaV. K.. Quasi-steady state: A real behavior [J]. Can Geotech J, 1997, 34(5): 749-761

[9]

ChuJ.. Discussion “The critical state of sands” [J]. Geotechnique, 1992, 42(4): 655-663

[10]

WANG Wen-shao. Mechanism of soil liquefaction [J]. Journal of Hydraulic Engineering, 1981(5): 22–34. (in Chinese)

[11]

CUNDALL P A. A computer model for simulating progressive, large-scale movements in blocky rock systems [C]// Proc Symp Int Soc Rock Mech. Nancy, 1971: 2–8.

[12]

CundallP. A., StrackO. D. L.. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29(1): 47-65

[13]

CundallP. A.. Computer simulations of dense sphere assemblies [M]. Micromechanics of Granular Materials, 1988Amsterdam, NetherlandsElsevier Science Publishers113-123

[14]

CundallP. A.. A discontinuous future for numerical modelling in geomechanics [J]. Proceedings of the ICE-Geotechnical Engineering, 2001, 149(1): 41-47

[15]

TsujiY., KawaguchiT., TanakaT.. Discrete particle simulation of two dimensional fluidized bed [J]. Powder Technology, 1993, 77: 79-87

[16]

KafuiD., ThorntonC., AdamsM. J.. Discrete particle-continuum fluid modeling of gad-solid fluidized beds [J]. Chem Eng Sci, 2002, 57(13): 2395-2410

[17]

ZeghalM., el ShamyU.. Liquifaction of saturated loose and cemented granular soils [J]. Powder Technology, 2008, 184: 254-265

[18]

ThorntonC., barnesD. J.. Computer simulated deformation of compact granular assemblies [J]. Acta Mechanica, 1986, 64: 45-61

[19]

NgT. T., DorbyR.. Numerical simulations of monotonic and cyclic loading of granular soil [J]. Journal of Geotechnical Engineering, ASCE, 1994, 120(2): 388-403

[20]

ZhangLing.The behaviour of granular material in pure shear, direct shear and simple shear [D], 2003Birmingham, UKCivil Engineering, Aston University

[21]

BonillaR. R. O.Numerical simulations of undrained granular media [D], 2004Waterloo, CanadaUniversity of Waterloo

[22]

ShafipourR., SorousA.. Fluid coupled-DEM modelling of undrained behavior of granular media [J]. Computers and Geotechnics, 2008, 35: 673-685

[23]

SitharamT. G., DineshS. V., ShimizuN.. Micromechanical modelling of monotonic drained and undrained shear behaviour of granular media using three-dimensional DEM [J]. Int J Numer Anal Meth Geomech, 2002, 26: 1167-1189

[24]

ThorntonC.. Numerical simulations of deviatoric shear deformation of granular media [J]. Geotechnique, 2000, 50(1): 43-53

[25]

MindlinR. D., DeresiewiczH.. Elastic spheres in contact under varying oblique force [J]. Trans ASME, J Appl Mech, 1953, 20: 327-344

[26]

ThorntonC., YinK. K.. Impact of elastic spheres with and without adhesion [J]. Powder Technology, 1991, 65: 153-166

[27]

ThorntonC.OdaM., IwashitaK.. Interparticle relationships between forces and displacements [M]. Mechanics of Granular Materials-An introduction, 1999RotterdamBalkema207-217

[28]

ThorntonC., RandallC. W.. Applications of theoretical contact mechanics to solid particle system simulation [M]. Micromechanics of Granular Materials, 1988AmsterdamElsevier133-142

[29]

GongG.-bin.DEM simulations of drained and undrained behaviour [D], 2008Birmingham, UKSchool of Civil Engineering, University of Birmingham

[30]

ThorntonC., ZhangLing.. On the evolution of stress and microstructure during general 3D deviatoric straining of granular media [J]. Geotechnique, 2010, 60(5): 333-341

[31]

LiuL.-feng.. Micromechanics of granular assemblies of elastic-perfectly plastic spheres during quasi-static deformation [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 524-530

[32]

LiG.-xin.Advanced soil mechanics [M], 2004BeijingTsinghua University Press147-148

[33]

YamamuroJ. A., LadeP. V.. Static liquefaction of very loose sands [J]. Can Geotech J, 1997, 34: 905-917

[34]

RothenburgL., KruytN. P.. Critical state and evolution of coordination number in simulated granular materials [J]. International Journal of Solids and Structures, 2004, 41: 5763-5774

[35]

SchofieldM. A., WrothC. P.Critical state soil mechanics [M], 1968LondonMcGraw-Hill93-114

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/