Parametric optimization and performance comparison of organic Rankine cycle with simulated annealing algorithm
Zhi-qi Wang , Nai-jun Zhou , Jia-qi Zhang , Jin Guo , Xiao-yuan Wang
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (9) : 2584 -2590.
Parametric optimization and performance comparison of organic Rankine cycle with simulated annealing algorithm
Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100–180 °C and R141b shows better performance when the temperature is higher than 180 °C. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100 °C.
parametric optimization / organic Rankine cycle / simulated annealing algorithm / working fluid / low-temperature source
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
/
| 〈 |
|
〉 |