Stabilizability analysis of sphere plants

Bin Lü , Qing-he Wu , Li Xu , Yang Yang

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (9) : 2561 -2571.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (9) : 2561 -2571. DOI: 10.1007/s11771-012-1311-z
Article

Stabilizability analysis of sphere plants

Author information +
History +
PDF

Abstract

Let p(s, δ) be a sphere plant family described by the transfer function set where the coefficients of the denominator and numerator polynomials are affine in a real uncertain parameter vector δ satisfying the euclidean norm constraint ‖δ‖<δ. The concept of stabilizability radius of P(s, δ) is introduced which is the norm bound δs for δ such that every member plant of P(s, δ) is stabilizable if and only if ‖δ‖<δs. The stabilizability radius can be simply interpreted as the ‘largest sphere’ around the nominal plant P(s, 0) such that P(s, δ) is stabilizable. The numerical method and the analytical method are presented to solve the stabilizability radius calculation problem of the sphere plants.

Keywords

real parameter uncertainty / sphere plant family / stabilizability / stabilizability radius

Cite this article

Download citation ▾
Bin Lü, Qing-he Wu, Li Xu, Yang Yang. Stabilizability analysis of sphere plants. Journal of Central South University, 2012, 19(9): 2561-2571 DOI:10.1007/s11771-012-1311-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChapellatH., BhattacharyyaS. P.. A generalization of Kharitonov’s theorem: Robust stability of interval plants [J]. IEEE Transaction on Automatic Control, 1989, 34(3): 306-311

[2]

BarmishB. R., HollotC. V., KrausF. J., TempoR.. Extreme point results for robust stabilization of interval plants with first order compensators [J]. IEEE Transaction on Automatic Control, 1992, 37(6): 707-714

[3]

BarmishB. R.New tools for robustness of linear systems [M], 1994New YorkMacMillan Publishing Company113-125

[4]

QiuL., DavisonE. J.. A simple procedure for the exact stability robustness computation of polynomials with affine coefficient perturbations [J]. Systems & Control Letters, 1989, 13(5): 413-420

[5]

WuQ.-he.. Computation of the stability radius of a Hurwitz polynomial with diamond-like uncertainties [J]. System & Control Letters, 1998, 35(1): 45-60

[6]

WU Qing-he, MANSOUR M. Robust stability analysis of control systems with parameter uncertainties: An eigenvalue approach [C]// Proceedings of the 14th World Congress of IFAC. Beijing, China, 1999: 49–54.

[7]

WuQ.-he.. Robust stability analysis of control systems with interval plants [J]. International Journal of Control, 2001, 74(9): 921-937

[8]

B., WuQ.-he.. Stability margin of the uncertain control system [J]. Journal of Control Theory and Applications, 2009, 7(4): 427-432

[9]

VIDYASAGAR M. Control system synthesis: A factorization approach [M]. Cambridge, Massachusetts: MIT Press, 1985: 78–82.

[10]

BlondelV.Simultaneous stabilization of linear systems [M], 1994New YorkMacmillan131-145

[11]

BlondelV., GeversM.. Simultaneous stabilizability of three linear systems is rationally undecidable [J]. Mathematics of Control, Signals and Systems, 1993, 6(2): 135-145

[12]

BlondelV., TsitsiklisJ.. NP-hardness of some linear control design problems [J]. SIAM Journal on Control and Optimization, 1997, 35(6): 2118-2127

[13]

WuQ.-h., XuL., YoshihisaA.. On the necessary solvability conditions of parametric robust stabilization problem [J]. Acta Automatica Sinica, 2004, 30(5): 723-730

[14]

BarmishB. R.. On the radius of stabilizability of LTI systems: Application to projection implementation in indirect adaptive control [J]. International Journal of Adaptive Control and Signal Processing, 1991, 5(4): 251-258

[15]

WuQ.-he.. Stabilizability may be sufficient for robustly stabilizing an interval plant [J]. Acta Automatica Sinica, 2007, 33(10): 1084-1087

[16]

WuQ.-he.. Solvability condition for a class of parametric robust stabilization problem [J]. Journal of Beijing Institute of Technology, 2007, 16(4): 379-383

[17]

B., WuQ.-h., XuLi.. Optimal robust stabilization for sphere plant family [J]. Control Theory & Applications, 2010, 27(11): 1497-1503

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/