Novel Retinex algorithm by interpolation and adaptive noise suppression

Wu-jing Li , Bo Gu , Jiang-tao Huang , Ming-hui Wang

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (9) : 2541 -2547.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (9) : 2541 -2547. DOI: 10.1007/s11771-012-1308-7
Article

Novel Retinex algorithm by interpolation and adaptive noise suppression

Author information +
History +
PDF

Abstract

In order to improve image quality, a novel Retinex algorithm for image enhancement was presented. Different from conventional algorithms, it was based on certain defined points containing the illumination information in the intensity image to estimate the illumination. After locating the points, the whole illumination image was computed by an interpolation technique. When attempting to recover the reflectance image, an adaptive method which can be considered as an optimization problem was employed to suppress noise in dark environments and keep details in other areas. For color images, it was taken in the band of each channel separately. Experimental results demonstrate that the proposed algorithm is superior to the traditional Retinex algorithms in image entropy.

Keywords

Retinex algorithm / illumination estimation / interpolation / adaptive noise suppression

Cite this article

Download citation ▾
Wu-jing Li, Bo Gu, Jiang-tao Huang, Ming-hui Wang. Novel Retinex algorithm by interpolation and adaptive noise suppression. Journal of Central South University, 2012, 19(9): 2541-2547 DOI:10.1007/s11771-012-1308-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LandE., MccannJ.. Lightness and Retinex theory [J]. J Opt Soc Amer, 1971, 61(1): 1-11

[2]

ProvenziE., FierroM., RizziA., CarliL. D., GadiaD., MariniD.. Random spray Retinex: A new Retinex implementation to investigate the local properties of the model [J]. IEEE Trans Image Process, 2007, 16(1): 162-171

[3]

MorelJ. M., PetroA., SbertC.. A PDE formalization of Retinex theory [J]. IEEE Trans Image Process, 2010, 19(11): 2825-2837

[4]

FRANKLE J, MCCANN J. Method and apparatus for lightness imaging: US, 4384336 [P]. 1983-05-17.

[5]

FuntB., CiureaF., MccannJ.. Retinex in Matlab [J]. Journal of the Electronic Imaging, 2004, 13(1): 48-57

[6]

JobsonD. J., RahmanZ., WoodellG. A.. A multiscale Retinex for bridging the gap between color images and the human observation of scenes [J]. IEEE Trans on Image Processing, 1997, 6(7): 965-976

[7]

BertalmioM., CasellesV., ProvenziE.. Issues about Retinex theory and contrast enhancement [J]. Int J Comput Vis, 2009, 83(1): 101-119

[8]

BertalmioM., CowanJ.. Implementing the Retinex algorithm with Wilson-Cowan equations [J]. J Physiol, 2009, 103(1): 69-72

[9]

KimmelR., EladM., ShakedA., KeshetR., SobelI.. A variational framework for Retinex [J]. International Journal of Computer Vision, 2003, 52(1): 7-23

[10]

EladM.. Retinex by two bilateral filters [C]. 5th International Conference on Scale-Space and PDE Methods in Computer Vision, 2005HofgeismarSpringer217-229

[11]

XiongW.-h., FuntB.. Stereo Retinex [J]. Image Vis Comput, 2009, 27(1): 178-188

[12]

SubrK., SolerC., DurandF.. Edge-preserving multiscale image decomposition based on local extrema [J]. ACM Trans Graph, 2009, 28(5): 1-9

[13]

LevinA., LischinskiD., WeissY.. Colorization using optimization [J]. ACM Trans Graph, 2004, 23(3): 689-694

[14]

SchechnerY. Y., KarpelN.. Recovery of underwater visibility and structure by polarization analysis [J]. IEEE J Oceanic Eng, 2005, 30(3): 570-587

[15]

SchechnerY. Y., AverbuchY.. Regularized image recovery in scattering media [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2007, 29(9): 1655-1660

[16]

KaftoryR., SchechnerY. Y., ZeeviY. Y.. Variational distance-dependent image restoration [C]. Proc IEEE Conf Computer Vision and Pattern Recognition, 2007MinneapolisIEEE1-8

[17]

FarbmanZ., FattalR., LischinskiD., SzeliskiR.. Edge-preserving decompositions for multi-scale tone and detail manipulation [J]. ACM Trans Graph, 2008, 27(3): 1-10

[18]

LischinskiD., FarbmanZ., UyttendeleM., SzeliskiR.. Interactive local adjustment of tonal values [J]. ACM Trans Graph, 2006, 25(3): 646-653

[19]

GhimireD., LeeJ.. Nonlinear transfer function-based local approach for color image enhancement [J]. Consumer Electronics, IEEE Transactions on, 2011, 57(2): 858-865

[20]

LiMing.. A fast algorithm for color image enhancement with total variation regularization [J]. Science China-Information Science, 2010, 53(9): 1913-1916

[21]

FerradansS., BertalmioM., ProvenziE., CasellesV.. An analysis of visual adaptation and contrast perception for tone mapping [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2011, 33(10): 2002-2012

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/