Spectra analysis and O2 evolution for TiO2 photocatalyst compounded with indirect transition semiconductors

Hai-xia Tong , Li-yuan Chai , Xin-rui Zhang

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (9) : 2425 -2433.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (9) : 2425 -2433. DOI: 10.1007/s11771-012-1292-y
Article

Spectra analysis and O2 evolution for TiO2 photocatalyst compounded with indirect transition semiconductors

Author information +
History +
PDF

Abstract

The photo absorbing, photo transmitting and photoluminescence performances of TiO2 photocatalysts compounded with V2O5 or WO3 were investigated by UV-Vis spectra, transmitting spectra, and PL spectra, respectively. The energy band structures of TiO2 photocatalysts were analyzed. The photocatalytic activities of the TiO2 photocatalysts were investigated by splitting of water for O2 evolution. The results indicate that the band gaps of WO3 and V2O5 are about 2.8 and 2.14 eV, respectively, and the band gap of rutile TiO2 is about 3.08 eV. Speeds of water splitting for 2%WO3-TiO2 and 8%V2O5-TiO2 photocatalysts are 420 and 110 μmol/(L·h), respectively, under UV light irradiation. V2O5 and WO3 compounded with suitable concentration can improve the photocatalytic activity of TiO2 with Fe3+ as electron acceptor.

Keywords

TiO2 photocatalyst / indirect transition semiconductor / spectra analysis / photo splitting water / O2 evolution

Cite this article

Download citation ▾
Hai-xia Tong, Li-yuan Chai, Xin-rui Zhang. Spectra analysis and O2 evolution for TiO2 photocatalyst compounded with indirect transition semiconductors. Journal of Central South University, 2012, 19(9): 2425-2433 DOI:10.1007/s11771-012-1292-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

OhsakaT., YamaokaS., ShimomuraO.. Effect of hydrostatic pressure on the Raman spectrum of anatase (TiO2) [J]. Solid State Communications, 1979, 30(6): 345-347

[2]

JoséM. E. F., AlejandroM. A.. Theoretical study of the emission of light stimulated by phonons in indirect bandgap semiconductor [J]. Procedia Computer Science, 2011, 7: 231-232

[3]

JoséM. E. F., AlejandroM. A.. Theoretical Study about the gain in indirect bandgap semiconductor optical cavities [J]. Physica B: Condensed Matter, 2012, 407: 2044-2049

[4]

YinJ. L., HuM. L., YuZ. Z., ZhangC., SunL. Z., ZhongJ. X.. Direct or indirect semiconductor: The role of stacking fault in h-BN [J]. Physica B, 2011, 406: 2293-2297

[5]

WangY.-c., YaoT.-k., LiH., LianJ., LiJ.-h., LiZ.-p., ZhangJ.-w., GouH.-yang.. Structural stability, phase transition, and mechanical and electronic properties of transition metal nitrides MN(M=Tc, Re, Os, and Ir): First-principles calculations [J]. Computational Materials Science, 2012, 56: 116-121

[6]

FaragA. A. M., MansourA. M., AmmarA. H., RafeaM. A.. Characterization of electrical and optical absorption of organic based methyl orange for photovoltaic application [J]. Synthetic Metals, 2011, 161: 2135-2143

[7]

MeilikhovE. Z., FarzetdinovaR. M.. Metal-insulator transition induced by fluctuations of the magnetic potential in the quantum well of the semiconductor structure with magnetic impurities’ δ-layer [J]. Physics Letters A, 2011, 375: 3731-3738

[8]

TongH.-x., ChenQ.-y., YinZ.-l., HuH.-p., LiJ., ZhaoLi.. Preparation and photocatalytic activity of TiO2 photocatalyst coated with WO3 [J]. The Chinese Journal of Nonferrous Metals, 2008, 4(18): 682-687

[9]

GaoY.-l., ChenQ.-y., TongH.-x., HuH.-p., QianD., YangY.-h., ZhouJ.-liang.. Preparation of TiO2 photocatalyst loaded with V2O5 for O2 evolution [J]. Journal of Central South University of Technology, 2009, 16: 919-925

[10]

MorrisonS. R.Electrochemistry at semiconductor and oxidized metal electrodes [J], 1988BeijingScience Press199

[11]

XuL.-b., FanY.-n., LiuL., LinM., ChenYi.. The dispersion state and catalytic performance of vanadium-oxygen species on the surface of V2O5/TiO2 catalyst [J]. Science in China (Series B), 2002, 32(3): 235-242

[12]

HuR.-r., ZhongS.-he.. Mutual modification of V2O5 and TiO2 on the surface of supported coupled-semiconductor V2O5-TiO2/ SiO2 [J]. Chinese Journal of Catalysis, 2005, 16(1): 32-36

[13]

LiuE.-k., ZhuB.-s., LuoJ.-sheng.Semiconductor physics [M], 1994BeijingNational Defence Industry Press25

[14]

LethyK. J., BeenaD., VinodK. R., MahadevanP. V. P., GanesanV., SatheV.. Structural, optical and morphological studies on laser ablated nanostructured WO3 thin films [J]. Applied Surface Science, 2008, 254: 2369-2376

[15]

XuM., QiuJ.-w., HeD.-yan.. Microstructures and electrical and optical properties of vanadium pentoxide films [J]. Vacuum Science and Technology, 2003, 25(6): 373-376

[16]

IkariH., OkanishiK., TomitaM.. Fluorescence MDR features of Eu3+ doped sol-gel TiO2 hydrate microspheres [J]. Opt Mater, 2008, 30(8): 1323-1326

[17]

WangY.-q., ZhangL., ChengH.-m., MaJ.-ming.. The photocatalytic properties of transition metal ion-doped TiO2 nanoparticles-Photocatalytic degradation of rhodamine B [J]. Chemical Journal of Chinese Universities, 2000, 6(21): 958-960

[18]

LiD.-z., ZhenY., FuZ.-xian.. Photoluminescence of nano-TiO2 [J]. Chinese Journal of Materials Research, 2000, 14(6): 639-642

[19]

LiD., OhashiN., HishitaS., KolodiazhnyiT., HanedaH.. Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations [J]. J Solid State Chem, 2005, 178(11): 3293-3302

[20]

SerponeN., LawlessD., KhairutdinovR.. Size effects on the photophysical properties of colloidal anatase TiO2 Particles: Size quantization or direct transitions in this indirect semiconductor [J]. J Phys Chem, 1995, 99: 16646-16654

[21]

EmelineA. V., SerponeN.. Photo-induced processes in heterogeneous nanosystems from photoexcitation to interfacial chemical transformations [J]. Chem Phys Lett, 2001, 345(54): 105-110

[22]

HuangD.-xiu.Semiconductor optoelectronics [M], 1994ChengduElectronic Science and Technology University Press4

[23]

JingL.-q., XinB.-f., WangD.-j., YuanF.-long.. Relationships between photoluminescence performance and photocatalytic activity of ZnO and TiO2 nanoparticles [J]. Chemical Journal of Chinese Universities, 2005, 26(1): 111-115

[24]

FangZ.-lie.Semiconductor luminescent materials and devices [M], 1992ShanghaiFudan University Press92

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/