Underwater friction stir welding of ultrafine grained 2017 aluminum alloy

Kuai-she Wang , Jia-lei Wu , Wen Wang , Long-hai Zhou , Zhao-xia Lin , Liang Kong

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (8) : 2081 -2085.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (8) : 2081 -2085. DOI: 10.1007/s11771-012-1248-2
Article

Underwater friction stir welding of ultrafine grained 2017 aluminum alloy

Author information +
History +
PDF

Abstract

2017 aluminum alloy plates with an ultrafine grained (UFG) structure were produced by equal channel angular processing (ECAP) and then were joined by underwater friction stir welding (underwater FSW). X-ray diffractometer (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) and microhardness tester were adopted to investigate the microstructural and mechanical characteristics of the FSW joint. The results indicate that an ultrafine grained microstructure with the mean grain size of ∼0.7 μm is obtained in the weld nugget by using water cooling. However, The FSW joint exhibits softening compared with the ultrafine grained based material and the heat affected zone (HAZ) has the lowest hardness owing to the coarsening of the strengthening precipitates.

Keywords

ultrafine grained structure / equal channel angular processing / aluminum alloy / underwater friction stir welding

Cite this article

Download citation ▾
Kuai-she Wang, Jia-lei Wu, Wen Wang, Long-hai Zhou, Zhao-xia Lin, Liang Kong. Underwater friction stir welding of ultrafine grained 2017 aluminum alloy. Journal of Central South University, 2012, 19(8): 2081-2085 DOI:10.1007/s11771-012-1248-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ValiveR. Z., IslamgalievR. K., AlexandrovI. V.. Bulk nanostructured materials from severe plastic deformation [J]. Progress in Materials Science, 2000, 45(2): 103-189

[2]

ZhuY. T., LoweT. C., LangdonT. G.. Performance and applications of nanostructured materials produced by severe plastic deformation [J]. Scripta Materialia, 2004, 51(8): 825-830

[3]

SEGAL V M, REZNIKOV V I, DROBYSHEVKIJ A E, KOPYLOV V I. Plastic metal working by simple shear [J]. Izvestiya AN SSSR: Metally, 1981 (1): 115–123.

[4]

THOMAS W M, NICHOLAS D E, NEEDHAM J C, MURCH M G, TEMPLESMITH P, DAWES C J. Friction stir butt welding: GB Patent Application. US Patent, 5460317 [P]. 1995.

[5]

LeeW. B., YeonY. M., JungS. B.. The improvement of mechanical properties of friction-stir-welded A356 Al alloy [J]. Materials Science and Engineering A, 2003, 355(1/2): 154-159

[6]

Caballo MuñozA., RückertG., HuneauB., SauvageX., MaryaS.. Comparison of TIG welded and friction stir welded Al-4.5Mg-0.26Sc alloy [J]. Journal of Materials Processing Technology, 2008, 197(1/3): 337-343

[7]

BarcellonaA., BuffaG., FratiniL., PalmeriD.. On microstructural phenomena occurring in friction stir welding of aluminum alloys [J]. Journal of Materials Processing Technology, 2006, 177(1/2/3): 340-343

[8]

UematsuY., TokajiK., ShibataH., TozakiY., OhmuneT.. Fatigue behaviour of friction stir welds without neither welding flash nor flaw in several aluminum alloys [J]. International Journal of Fatigue, 2009, 31(10): 1443-1453

[9]

SatoY. S., UrataM., KokawaH., IkedaK., EnomotoM.. Retention of fine grained microstructure of equal channel angular pressed aluminium alloy 1050 by friction stir welding [J]. Scripta Materialia, 2001, 45(1): 109-114

[10]

SatoY. S., UrataM., KokawaH., IkedaK.. Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys [J]. Material Science and Engineering A, 2003, 354(1/2): 298-305

[11]

SatoY. S., KuriharaY., ParkS. H. C., KokawaH., TsujiN.. Friction stir welding of ultrafine grained Al alloy 1100 produced by accumulative roll-bonding [J]. Scripta Materialia, 2004, 50(1): 57-60

[12]

TopicI., HöppelH. W., GökenM.. Friction stir welding of accumulative roll-bonded commercial-purity aluminium AA1050 and aluminium alloy AA6016 [J]. Materials Science and Engineering A, 2009, 503(1/2): 163-166

[13]

SunY., FujiiH., TakadaY., TsujiN., NakataK., NogiK.. Effect of initial grain size on the joint properties of friction stir welded aluminum [J]. Materials Science and Engineering A, 2009, 527(1/2): 317-321

[14]

BenavidesS., LiY., MurrL. E., BrownD., McclureJ. C.. Low-temperature friction-stir welding of 2024 Aluminum [J]. Scripta Materialia, 1999, 41(8): 809-815

[15]

HofmannD. C., VecchioK. S.. Submerged friction stir processing (SFSP): An improved method for creating ultra-fine-grained bulk materials [J]. Materials Science and Engineering A, 2005, 402(1/2): 234-241

[16]

ClarkT. D.An analysis of microstructure and corrosion resistance in underwater friction stir welded 304L stainless steel [D], 2005ProvoBrigham Young University

[17]

LiuH.-j., ZhangH.-j., HuangY.-x., YuLei.. Mechanical properties of underwater friction stir welded 2219 aluminum alloy [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(8): 1387-1391

[18]

LiuH.-j., ZhangH.-j., YuLei.. Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy [J]. Materials and Design, 2011, 32(3): 1548-1553

[19]

FurukawaM., IwahashiY., HoritaZ., NemotoM., LangdonT. G.. The shearing characteristics associated with equal-channel angular pressing [J]. Materials Science and Engineering A, 1998, 257(2): 328-332

[20]

GenevoisC., DeschampsA., DenquinA., Doisneau- CottigniesB.. Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds [J]. Acta Materialia, 2005, 53(8): 2447-2458

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/