Hot-compression behavior of Al alloy 5182

Jian-guo Tang , Xing-xing Huang , Xin-ming Zhang

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (8) : 2073 -2080.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (8) : 2073 -2080. DOI: 10.1007/s11771-012-1247-3
Article

Hot-compression behavior of Al alloy 5182

Author information +
History +
PDF

Abstract

Hot-compression of aluminum alloy 5182 was carried out on a Gleeble-1500 thermo-simulator at deformation temperature ranging from 350 °C to 500 °C and at strain rate from 0.01 s−1 to 10 s−1 with strain range from 0.7 to 1.9. The microstructures and macro-textures evolution under different conditions were investigated by polarized optical microscopy and X-ray diffraction analysis, respectively. The basic trend is that the hot-compression stress increases with the decrease of temperature and increase of strain rate, which is revealed and elucidated in terms of Zener-Hollomon parameter in the hyperbolic sine equation with the hot-deformation activation energy of 143.5 kJ/mol. An empirical constitutive equation is proposed to predict the hot-deformation behavior under different conditions. As deformation temperature increases up to 400 °C, at strain rate over 1 s−1, dynamic recrystallization (DRX) occurs. Cube orientation {100}〈001〉 is detected in the recrystallized sample after hot-compression.

Keywords

aluminum alloy 5182 / hot-compression / texture / microstructure

Cite this article

Download citation ▾
Jian-guo Tang, Xing-xing Huang, Xin-ming Zhang. Hot-compression behavior of Al alloy 5182. Journal of Central South University, 2012, 19(8): 2073-2080 DOI:10.1007/s11771-012-1247-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

EnglerO., LochteL., HirschJ.. Through-process simulation of texture and properties during the thermomechanical propecessing of aluminium sheets [J]. Acta Materialia, 2007, 55(16): 5449-5463

[2]

DohertyR. D., HughesD. A., HumphreysF. J., JonasJ. J., Juul JensenD., KassnerM. E., KingW. E., McnelleyT. R., McQUEENH. J., RollettA. D.. Current issues in recrystallization: A review [J]. Materials Science and Engineering A, 1997, 238(2): 219-274

[3]

LinJ.-p., WangY.-l., ZhiL., ChenG.-liang.. Dynamic recrystallization during hot torsion of Al-4Mg alloy [J]. Journal of University of Science and Technology Beijing, 2003, 10(2): 45-50

[4]

IharaK., MiuraY.. Dynamic recrystallization in Al-Mg-Sc alloys [J]. Materials Science and Engineering A, 2004, 387/388/389(1): 647-650

[5]

WellsM. A., LloydD. J., SamarasekeraI. V., BrimacombeJ. K., HawboltE. B.. Modeling the microstructural changes during hot tandem rolling of AA5xxx aluminum alloys: Part I. Microstructural evolution [J]. Metallurgical and Materials Transaction B, 1998, 29B(3): 611-620

[6]

WellsM. A., LloydD. J., SamarasekeraI. V., BrimacombeJ. K., HawboltE. B.. Modeling the microstructural changes during hot tandem rolling of AA5xxx aluminum alloys: Part II. Texture evolution [J]. Metallurgical and Materials Transaction B, 1998, 29B(3): 621-633

[7]

WellsM. A., LloydD. J., SamarasekeraI. V., BrimacombeJ. K., HawboltE. B.. Modeling the microstructural changes during hot tandem rolling of AA5xxx aluminum alloys: Part III. Texture evolution [J]. Metallurgical and Materials Transaction B, 1998, 29B(3): 709-719

[8]

BangeM. E.Stress relaxation of AA5182 during hot deformation [D], 2003Urbana-ChampaignUniversity of Illinois

[9]

TangJ.-g., ZhangX.-m., DengY.-lai.. Texture decomposition with particle swarm optimization method [J]. Computer Material Science, 2006, 38(2): 395-399

[10]

HUMPHREYS F J, HATHERLY M. Recrystallization and related annealing phenomena [M]. Elsevier, 2004: 416.

[11]

McQueenH. J., RyanN. D.. Constitutive analysis in hot working [J]. Materials Science and Engineering A, 2002, 322(1/2): 43-63

[12]

ZenerC., HollomonJ. H.. Effect of strain-rate upon the plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22-32

[13]

ZhangX.-m., XuM., TangJ.-g., OuJun.. Hot-compression behavior of Al-1Mn-1Mg alloy [J]. Journal of Central South University of Technology, 2010, 17(3): 425-430

[14]

WangY., ShaoW. Z., ZhenL., YangL., ZhangX. M.. Flow behavior and microstructures of superalloy 718 during high temperature deformation [J]. Materials Science and Engineering A, 2008, 497(1/2): 479-486

[15]

DuckhamA., KnutsenR. D., EnglerO.. Influence of deformation variables on the formation of copper-type shear bands in Al-1Mg [J]. Acta Materialia, 2001, 49(14): 2739-2749

[16]

PanchanadeeswaranS., FieldD. P.. Texture evolution during plane strain deformation of aluminum [J]. Acta Metallurgica et Materialia, 1995, 43(4): 1683-1692

[17]

MaoW.-m., ZhangX.-ming.Quantitative texture analysis of crystalline materials [M], 1995BeijingMetallurgical Industry Press110-112

[18]

LiuW. C., MorrisJ. G.. Effect of hot and cold deformation on the β fiber rolling texture in continuous cast AA5052 aluminum alloy [J]. Scripta Materialia, 2005, 52(12): 1317-1321

[19]

JuulJ. D., ShiH., BolingbrokeR. K.. Texture development in Al 3003 during hot plane strain compression [J]. Materials Science Forum, 1994, 157–162(1): 745-752

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/