Sulfur speciation transformation during bioleaching of pyrite-containing sphalerite concentrate by thermophile Sulfolobus metallicus at 65 °C

Jin-lan Xia , Xiao-juan Zhao , Chang-li Liang , Yi Yang , Zhen-yuan Nie , Lu Tang , Chen-yan Ma , Lei Zheng , Yi-dong Zhao , Guan-zhou Qiu

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (7) : 1961 -1966.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (7) : 1961 -1966. DOI: 10.1007/s11771-012-1232-x
Article

Sulfur speciation transformation during bioleaching of pyrite-containing sphalerite concentrate by thermophile Sulfolobus metallicus at 65 °C

Author information +
History +
PDF

Abstract

Sulfur speciation transformation during bioleaching of pyrite-containing sphalerite concentrate by thermophile Sulfolobus metallicus (S. metallicus) at 65 °C was investigated by X-ray diffraction (XRD), diffuse reflectance Fourier transform infrared spectroscopy (FT-IR) and sulfur K-edge X-ray absorption near edge structure spectroscopy (XANES). The results show that the presence of S. metallicus effectively enhances the dissolution of the mineral. The yield of zinc increases from 0.5 g/L in sterile control to 2.7 g/L in bioleaching. The pyrite in the concentrate facilitates zinc dissolution in the early stage, but has hindrance role in the late stage for the formation of jarosite. Sulfur speciation analyses show that jarosite and elemental sulfur are main products in bioleaching process, and the accumulation of jarosite is mainly responsible for the decline of leaching efficiency.

Keywords

sphalerite / bioleaching / Sulfolobus metallicus / sulfur K-edge X-ray absorption near edge spectroscopy (XANES) / sulfur speciation transformation

Cite this article

Download citation ▾
Jin-lan Xia, Xiao-juan Zhao, Chang-li Liang, Yi Yang, Zhen-yuan Nie, Lu Tang, Chen-yan Ma, Lei Zheng, Yi-dong Zhao, Guan-zhou Qiu. Sulfur speciation transformation during bioleaching of pyrite-containing sphalerite concentrate by thermophile Sulfolobus metallicus at 65 °C. Journal of Central South University, 2012, 19(7): 1961-1966 DOI:10.1007/s11771-012-1232-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

de SouzaA. D., PinaP. S., LeaoV. A.. Bioleaching and chemical leaching as an integrated process in the zinc industry [J]. Minerals Engineering, 2007, 20(6): 591-599

[2]

HoangJ., ReuterM. A., MatusewiczR., HughesS., PiretN.. Top submerged lance direct zinc smelting [J]. Minerals Engineering, 2009, 22(9/10): 742-751

[3]

RodriguezY., BallesterA., BlazquezM., GonzalezF., MunozJ.. New information on the sphalerite bioleaching mechanism at low and high temperature [J]. Hydrometallurgy, 2003, 71(1/2): 57-66

[4]

FowlerT., CrundwellF.. Leaching of zinc sulfide by Thiobacillus ferrooxidans: Experiments with a controlled redox potential indicate no direct bacterial mechanism [J]. Applied and Environmental Microbiology, 1998, 64(10): 3570-3575

[5]

XiaL.-x., LiuJ.-s., XiaoL., ZengJ., LiB.-m., GengM.-m., QiuG.-zhou.. Single and cooperative bioleaching of sphalerite by two kinds of bacteria-Acidithiobacillus ferriooxidans and Acidithiobacillus thiooxidans [J]. Transactions of the Nonferrous Metals Society of China, 2008, 18(1): 190-195

[6]

ChenS., QiuG.-z., QinW.-q., LanZ.-yue.. Bioleaching of sphalerite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans cultured in 9K medium modified with pyrrhotite [J]. Journal of Central South University of Technology, 2008, 15(4): 503-507

[7]

DeveciH., JordanM., PowellN., AlpI.. Effect of salinity and acidity on bioleaching activity of mesophilic and extremely thermophilic bacteria [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(3): 714-721

[8]

PinaP., LeaoV., SilvaC., DamanD., FrenayJ.. The effect of ferrous and ferric iron on sphalerite bioleaching with Acidithiobacillus sp [J]. Minerals Engineering, 2005, 18(5): 549-551

[9]

MousaviS., JafariA., YaghmaeiS., VossoughiM., RoostaazadR.. Bioleaching of low-grade sphalerite using a column reactor [J]. Hydrometallurgy, 2006, 82(1/2): 75-82

[10]

MousaviS., YaghmaeiS., VossoughiM., JafariA., RoostaazadR.. Zinc extraction from Iranian low-grade complex zinc-lead ore by two native microorganisms: Acidithiobacillus ferrooxidans and sulfobacillus [J]. International Journal of Mineral Processing, 2006, 80(2/3/4): 238-243

[11]

RohwerderT., GehrkeT., KinzlerK., SandW.. Bioleaching review part A [J]. Applied Microbiology and Biotechnology, 2003, 63(3): 239-248

[12]

da SilvaG.. Relative importance of diffusion and reaction control during the bacterial and ferric sulphate leaching of zinc sulphide [J]. Hydrometallurgy, 2004, 73(3/4): 313-324

[13]

ShiS.-y., FangZ.-h., NiJ.-ren.. Comparative study on the bioleaching of zinc sulphides [J]. Process Biochemistry, 2006, 41(2): 438-446

[14]

CrundwellF. K.RawlingsD. E.. Physical chemistry of bacterial leaching [M]. Biomining: Theory, microbes and industrial processes, 1997New YorkSpringer177-200

[15]

GiavenoA., LavalleL., ChiacchiariniP., DonatiE.. Bioleaching of zinc from low-grade complex sulfide ores in an airlift by isolated Leptospirillum ferrooxidans [J]. Hydrometallurgy, 2007, 89(1/2): 117-126

[16]

CordobaE. M., MunozJ. A., BlazquezM. L., GonzalezF., BallesterA.. Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria [J]. Hydrometallurgy, 2008, 93(3/4): 106-115

[17]

HiroyoshiN., AraiM., MikiH., TsunekawaM., HirajimaT.. A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions [J]. Hydrometallurgy, 2002, 63(3): 257-267

[18]

VilcoezJ., InoueC.. Mathematical modeling of thermophilic bioleaching of chalcopyrite [J]. Minerals Engineering, 2009, 22(11): 951-960

[19]

KaramanevD., NikolovL., MamatarkovaV.. Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions [J]. Minerals Engineering, 2002, 15(5): 341-346

[20]

HeH., XiaJ.-l., YangY., JiangH.-c., XiaoC.-q., ZhengL., MaC.-y., ZhaoY.-d., QiuG.-zhou.. Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis [J]. Hydrometallurgy, 2009, 99(1/2): 45-50

[21]

PaktuncD., FosterA., HealdS., LaflammeG.. Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy [J]. Geochimica et Cosmochimica Acta, 2004, 68(5): 969-983

[22]

KonishiY., NishimuraH., AsaiS.. Bioleaching of sphalerite by the acidophilic thermophile Acidianus brierleyi [J]. Hydrometallurgy, 1998, 47(2/3): 339-352

[23]

FowlerT., CrundwellF.. Leaching of zinc sulfide by Thiobacillus ferrooxidans: Bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions [J]. Applied and Environmental Microbiology, 1999, 65(12): 5285-5292

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/