Electrochemical treatment of wastewater containing chlorophenols using boron-doped diamond film electrodes

Jian-gong Wang , Xue-min Li

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (7) : 1946 -1952.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (7) : 1946 -1952. DOI: 10.1007/s11771-012-1230-z
Article

Electrochemical treatment of wastewater containing chlorophenols using boron-doped diamond film electrodes

Author information +
History +
PDF

Abstract

The electrochemical treatment of wastewater containing chlorophenols (2-monochlorophenol, 4-monochlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol) was carried out experimentally with synthetic boron-doped diamond (BDD) thin film electrodes. Current vs time curves under different cell voltages were measured. Removal rate of COD, instant current efficiency (ICE) and energy consumption were investigated under different current densities. The influence of supporting media is reported, which plays an important role in determining the global oxidation rate. The oxidative chloride is stronger than peroxodisulphate. The electrochemical characteristics of boron-doped diamond electrodes were investigated in comparison with active coating Ti substrate anode (ACT). The experimental results show that BDD is markedly superior to ACT due to its different absorption properties.

Keywords

boron-doped diamond / electrochemical treatment / chlorophenol / wastewater

Cite this article

Download citation ▾
Jian-gong Wang, Xue-min Li. Electrochemical treatment of wastewater containing chlorophenols using boron-doped diamond film electrodes. Journal of Central South University, 2012, 19(7): 1946-1952 DOI:10.1007/s11771-012-1230-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HoT. L., BoltonJ. R.. Toxicity changes during the UV treatment of pentachlorophenol in dilute aqueous solution [J]. Water Research, 1998, 32(2): 489-497

[2]

MartinT. M., YoungD. M.. Prediction of the acute toxicity (96-h LC50) of organic compounds to the fathead minnow (pimephales promelas) using a group contribution method [J]. Chemical Research in Toxicology, 2001, 14(10): 1378-1385

[3]

KishinoT., KobayshiK.. Studies on the mechanism of toxicity of chlorophenols found in fish through quantitative structure-activity relationships [J]. Water Research, 1996, 30(2): 393-399

[4]

BrillasE., MurE., SauledaR., SachezL., PeralJ., DomeechX., CasadoJ.. Aniline mineralization by AOP’s: Anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes [J]. Applied Catalysis B: Environmental, 1998, 16(1): 31-42

[5]

BrillasE., CalpeJ. C., CasadoJ.. Mineralization of 2,4-D by advanced electrochemical oxidation processes [J]. Water Research, 2000, 34(8): 2253-2262

[6]

CanizaresP., DomnguezJ. A., RodrigoM. A., VillasenorJ., RodrguezJ.. Effect of the current intensity in the electrochemical oxidation of aqueous phenol wastes at an activated carbon and steel anode [J]. Industrial and Engineering Chemistry Research, 1999, 38(10): 3779-3785

[7]

LerangU., EbertK., FloryK., GallaU., SchmiederH.. Organic waste destruction by indirect electrooxidation [J]. Separation Science and Technology, 1995, 30(7/9): 1883-1899

[8]

PolcaroA. M., PalmasS.. Electrochemical oxidation of chlorophenols [J]. Industrial and Engineering Chemistry Research, 1997, 36(5): 1791-1798

[9]

PolcaroA. M., PalmasS., RenoldiF., MasciaM.. On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chloropheno for wastewater treatment [J]. Journal of Applied Electrochemistry, 1999, 29(2): 147-151

[10]

GatrellM., MacdougallB.. Anodic electrochemistry of pentachlorophenol [J]. Journal of the Electrochemical Society, 1999, 146(9): 3335-3348

[11]

JohnsonS. K., HoukL. L., FengJ., HoukR. S., JohnsonD. C.. Electrochemical Incineration of 4-chlorophenol and the identification of products and intermediates by mass spectrometry [J]. Environmental Science and Technology, 1999, 33(15): 2638-2644

[12]

RodgersJ. D., JedralW., BunceN. J.. Electrochemical oxidation of chlorinated phenols [J]. Environmental Science and Technology, 1999, 33(9): 1453-1457

[13]

AzzamM. O., Al-TaraziM., TahboubY.. Anodic destruction of 4-chlorophenol solution [J]. Journal of Hazardous Materials, 2000, 75(1): 99-113

[14]

RodrigoM. A., MichaudP. A., DuoI., PanizzaM., CerisolaG., ComninellisCh.. Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment [J]. Journal of the Electrochemical Society, 2001, 148(5): D60-D64

[15]

GherardiniL., MichaudP. A., PanizzaM., ComniellisC., VatistasN.. Electrochemical oxidation of 4-chlorophenol for wastewater treatment [J]. Journal of the Electrochemical Society, 2001, 148(5): D78-D82

[16]

Ureta-ZanartuM. S., BustosP., BerrosC., DiezM. C., MoraM. L., GutierrezC.. Electrooxidation of 2,4-dichlorophenol and other polychlorinated phenols at a glassy carbon electrode [J]. Electrochimica Acta, 2002, 47(15): 2399-2406

[17]

MichaudP. A., MacheE., HaenniW., PerretA., ComninellisCh.. Preparation of peroxodisulfuric acid using boron-doped diamond thin film electrodes [J]. Electrochemical and Solid-State Letters, 2000, 3(2): 77-79

[18]

CanizaresP., Garca-GomezJ., LobatoJ., PrdrogoM. A.. Electrochemical oxidation of aqueous carboxylic acid wastes using diamond thin-film electrodes [J]. Industrial and Engineering Chemistry Research, 2003, 42(5): 956-962

[19]

PanizzaM., MichaudP. A., CerisolaG., ComminellisCh.. Anodic oxidation of 2-naphthol at boron-doped diamond electrodes [J]. Journal of the Electrochemical Society, 2001, 207(1/2): 206-214

[20]

KotzR., StuckiS., CarcerB.. Electrochemical waste water treatment using high overvoltage anodes. Part I: Physical and electrochemical properties of SnO2 anodes [J]. Journal of Applied Electrochemistry, 1991, 21(1): 14-20

[21]

GattrellM., KirkD. W.. A study of electrode passivation during aqueous phenol electrolysis [J]. Journal of the Electrochemical Society, 1993, 140(4): 903-911

[22]

StuckiS., KotzR., CarcerB., SuterW.. Electrochemical waste water treatment using high overvoltage anodes. Part II: Anode performance and applications [J]. Journal of Applied Electrochemistry, 1991, 21(2): 99-104

[23]

AwadY. M., AbuzaidA.. The influence of residence time on the anodic oxidation of phenol [J]. Separation and Purification Technology, 2000, 18(3): 227-236

[24]

LiH.-t., ZhuQ.-j., ZuRong.. Electrooxidative degradation of waste water from the ocean’s recover petroleum terminal station [J]. Industrial water treatment, 2002, 22(6): 23-25

[25]

CnaizaresP., Carcia-gonezJ., SaexC., RodrigoM. A.. Electrochemical oxidation of several chlorophenols on diamond electrodes: Part II. Influence of waste characteristics and operating conditions [J]. Journal of Applied Electrochemistry, 2004, 34(1): 87-94

[26]

ComninellisC., NeriniA.. Anodic oxidation of phenol in the presence of NaCl for wastewater treatment [J]. Journal of Applied Electrochemistry, 1995, 25(1): 23-28

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/