Linear and nonlinear control of a robotic excavator

Jun Gu , Xian-dong Ma , Jun-fang Ni , Li-ning Sun

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (7) : 1823 -1831.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (7) : 1823 -1831. DOI: 10.1007/s11771-012-1215-y
Article

Linear and nonlinear control of a robotic excavator

Author information +
History +
PDF

Abstract

Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator), were investigated. The excavator is being developed to dig trenches autonomously. One stumbling block is the achievement of adequate, accurate, quick and smooth movement under automatic control. Here, both classical and modern approaches are considered, including proportional-integral-derivative (PID) control tuned by conventional Zigler-Nichols rules, linear proportional-integral-plus (PIP) control, and a novel nonlinear PIP controller based on a state-dependent parameter (SDP) model structure, in which the parameters are functionally dependent on other variables in the system. Implementation results for the excavator joint arms control demonstrate that SDP-PIP controller provides the improved performance with fast, smooth and accurate response in comparison with both PID and linearized PIP control.

Keywords

robotic excavator / proportional-integral-derivative (PID) control / proportional-integral-plus (PIP) control / identification / state-dependent parameter model / state variable feedback

Cite this article

Download citation ▾
Jun Gu, Xian-dong Ma, Jun-fang Ni, Li-ning Sun. Linear and nonlinear control of a robotic excavator. Journal of Central South University, 2012, 19(7): 1823-1831 DOI:10.1007/s11771-012-1215-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MerrittE.Hydraulic control systems [M], 1976New YorkJohn Wiley

[2]

ChiangM. H., MurrenhoffH.. Adaptive servo-control for hydraulic excavators [C]. Power Transmission and Motion Control [PTMC’ 98], 1998UKProfessional Engineering Publishing Limited London and Bury St Edmunds81-95

[3]

HaQ., NguyenQ., RyeD., Durrant-WhyteH.. Impedance control of a hydraulic actuated robotic excavator [J]. Journal of Automation in Construction, 2000, 9(5/6): 421-435

[4]

BudnyE., ChlostaM., GutkowskiW.. Load-independent control of a hydraulic excavator [J]. Journal of Automation in Construction, 2003, 12(3): 245-254

[5]

GuJ., TaylorC. J., SewardD.. Proportional-integral-plus control of an intelligent excavator [J]. Journal of Computer-Aided Civil and Infrastructure Engineering, 2004, 19(1): 16-27

[6]

TaylorC. J., ShabanE. M., StablesM. A., AkoS.. Proportional-integral-plus control applications of state-dependent parameter models [J]. IMECHE Proceedings Journal of Systems and Control Engineering, 2007, 221(17): 1019-1032

[7]

GuJ., SewardD.. Digital servo control of a robotic excavator [J]. Chinese Journal of Mechanical Engineering, 2009, 22(2): 190-197

[8]

GuJ., SewardD.. Improved control of an intelligent excavator using proportional-integral-plus (pip) gain scheduling [J]. Journal of Central South University of Technology, 2012, 19(2): 384-392

[9]

BradleyD. A., SewardD. W.. The development, control and operation of an autonomous robotic excavator [J]. Journal of Intelligent and Robotic Systems, 1998, 21(1): 73-97

[10]

YoungP. C., BehzadiM. A., WangC. L., ChotaiA.. Direct digital and adaptive control by input-output, state variable feedback pole assignment [J]. International Journal of Control, 1987, 46(6): 1861-1881

[11]

TaylorC. J., ChotaiA., YoungP. C.. State space control system design based on non-minimal state-variable feedback: Further generalisation and unification results [J]. International Journal of Control, 2000, 73(14): 1329-1345

[12]

YoungP. C., FitzgeraldW. J.Stochastic, dynamic modelling and signal processing: Time variable and state dependent parameter estimation’s nonlinear and nonstationary signal processing [M], 2000CambridgeCambridge University Press

[13]

SewardD. W., PaceC., AgateR.. Safe and effective navigation of autonomous robots in hazardous environments [J]. Autonomous Robots, 2007, 22(3): 223-242

[14]

FranklinG. F., PowellJ. D., Emami-NaeiniA.Feedback control of dynamic systems, 19943rd edReading, MAAddison Wesley

[15]

ChotaiA., YoungP. C., BehzadiM. A.. Self-adaptive design of a nonlinear temperature control system [J]. Special Issue on Self-tuning Control, IEE proceedings, Part D, 1991, 38: 41-49

[16]

TaylorC. J.Generalized proportional-integral-plus (PIP) control [D], 1996LancasterLancaster University

[17]

TaylorC. J., ChotaiA., YoungP. C.. Nonlinear control by input-output state variable feedback pole assignment [J]. International Journal of Control, 2009, 82(6): 1029-1044

[18]

ExadaktylosV., TaylorC. J., WangL., YoungP. C.. Forward path model predictive control using a non-minimal state space form [J]. IMECHE Proceedings Journal of Systems and Control, 2009, 223(3): 353-369

[19]

WangL., GawthropP., YoungP. C., TaylorC. J.. Non-minimal state space model-based continuous-time model predictive control with constraints [J]. International Journal of Control, 2009, 82(6): 1122-1137

[20]

ShabanE. M., AkoS., TaylorC. J., SewardD. W.. Development of an automated verticality alignment system for a vibro-lance [J]. Automation in Construction, 2008, 17(5): 645-655

[21]

TaylorC. J., PedregalD. J., YoungP. C., TychW.. Environmental time series analysis and forecasting with the captain toolbox [J]. Environmental Modelling and Software, 2007, 22(6): 797-814

[22]

StablesM. A., TaylorC. J.. Nonlinear control of ventilation rate using state dependent parameter models [J]. Biosystems Engineering, 2006, 95(1): 7-18

[23]

McCabeA. P., YoungP. C., ChotaiA., TaylorC. J.. Proportional-Integral-Plus (PIP) control of non-linear systems [J]. Systems Science, 2000, 26(1): 25-46

[24]

BurnhamK. J., DunoyerA., MacroftS.. Bilinear controller with PID structure [J]. IEEE Computing and Control. Engineering Journal, 1999, 10(2): 63-69

[25]

ZiemianS. J.Bilinear proportional-integral-plus control [D], 2002UKCoventry University

[26]

GuJ., TaylorC. J., SewardD.. Modelling of an hydraulic excavator using simplified refined instrumental variable (SRIV) algorithm [J]. Journal of Control Theory and Applications, 2007, 5(4): 391-396

[27]

TaylorC. J., ChotaiA., YoungP. C.. Proportional-Integral-Plus (PIP) control of time delay systems [J]. Proceedings of the Institute of Mechanical Engineering, Journal of Systems and Control Engineering, 1998, 212(1): 37-48

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/