Extraction of metals from a zinc smelting slag using two-step procedure combining acid and ethylene diaminetetraacetic acid disodium

Kai-qi Jiang , Zhao-hui Guo , Xi-yuan Xiao , Long Zhang

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (7) : 1808 -1812.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (7) : 1808 -1812. DOI: 10.1007/s11771-012-1212-1
Article

Extraction of metals from a zinc smelting slag using two-step procedure combining acid and ethylene diaminetetraacetic acid disodium

Author information +
History +
PDF

Abstract

A two-step leaching method in combination of acid and ethylene diaminetetraacetic acid disodium (EDTA-Na2) was applied to extract metals such as Cd, Cu, Fe, Pb and Zn from a zinc smelting slag. The results show that the extraction rates of Cd, Cu, Fe and Zn in slag reach 88.3%, 54.1%, 69.6% and 54.7%, respectively, while the extraction rate of Pb is only 0.05% leached with 1.25 mol/L sulfuric acid under the conditions of the ratio of slag to liquid of 100 g/L, 65 °C and 120 r/min for 2 h. However, Pb extraction rate from 1.25 mol/L sulfuric acid leached residue reaches as high as 66.5% by using 0.1 mol/L EDTA-Na2 solution. The results indicate that two-step sequential extraction procedure combining 1.25 mol/L sulfuric acid and 0.1 mol/L EDTA-Na2 solution can extensively extract Cd, Cu, Fe, Pb and Zn from zinc smelting slag.

Keywords

zinc smelting slag / metal values / two-step sequential extraction / sulfuric acid / EDTA-Na2

Cite this article

Download citation ▾
Kai-qi Jiang, Zhao-hui Guo, Xi-yuan Xiao, Long Zhang. Extraction of metals from a zinc smelting slag using two-step procedure combining acid and ethylene diaminetetraacetic acid disodium. Journal of Central South University, 2012, 19(7): 1808-1812 DOI:10.1007/s11771-012-1212-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PiatakN. M., SealR. R.. Mineralogy and the release of trace elements from slag from the Hegeler Zinc smelter, Illinois (USA) [J]. Applied Geochemistry, 2010, 25(2): 302-320

[2]

SonkeJ. E., SiveryY., ViersJ., FreydierR., DeiongheL., AndréL., AggarwalJ. K., FontanF., DupréB.. Historical variations in the isotopic composition of atmospheric zinc deposition from a zinc smelter [J]. Chemical Geology, 2008, 252(3/4): 145-157

[3]

KulM., TopkayaY.. Recovery of germanium and other valuable metals from zinc plant residues [J]. Hydrometallurgy, 2008, 92(3/4): 87-94

[4]

SafarzadehM. S., MoradkhaniD., IlkhchiM. O.. Kinetics of sulfuric acid leaching of cadmium from Cd-Ni zinc plant residues [J]. Journal of Hazardous Materials, 2009, 163(2/3): 880-890

[5]

ArslanaC., ArslanbF.. Recovery of copper, cobalt, and zinc from copper smelter and converter slags [J]. Hydrometallurgy, 2002, 67(1/2/3): 1-7

[6]

SafarzadehM. S., MoradkhaniD., IlkhchiM. O., GolshanN. H.. Determination of the optimum conditions for the leaching of Cd-Ni residues from electrolytic zinc plant using statistical design of experiments [J]. Separation Purification Technology, 2008, 58(3): 367-376

[7]

GouveaL. R., MoraisC. A.. Recovery of zinc and cadmium from industrial waste by leaching/cementation [J]. Minerals Engineering, 2007, 20(9): 956-958

[8]

ZhangY., ManR.-l., NiW.-d., WangHui.. Selective leaching of base metals from copper smelter slag [J]. Hydrometallurgy, 2010, 103(1/2/3/4): 25-29

[9]

MoralesA., CruellsM., RocaA., BergóR.. Treatment of copper flash smelter flue dusts for copper and zinc extraction and arsenic stabilization [J]. Hydrometallurgy, 2010, 105(1/2): 148-154

[10]

BeseA. V., BoruluN., CopurM., ColakS., AtaO. N.. Optimization of dissolution of metals from Waelz sintering waste (WSW) by hydrochloric acid solutions [J]. Chemical Engineering Journal, 2010, 162(2): 718-722

[11]

GutiérrezR. Z., LapidusG. T., MoralesR. D.. Pressure leaching of a lead-zinc-silver concentrate with nitric acid at moderate temperatures between 130 and 170 °C [J]. Hydrometallurgy, 2010, 104(1): 8-13

[12]

JhaM. K., KumarV., SinghR. J.. Review of hydrometallurgical recovery of zinc from industrial wastes [J]. Resource, Conservation and Recycling, 2001, 33(1): 1-22

[13]

FarahmandF., MoradkhaniD., SafarzadehM. S., AshchiF. R.. Brine leaching of lead-bearing zinc plant residues: Process optimization using orthogonal array design methodology [J]. Hydrometallurgy, 2009, 95(3/4): 316-324

[14]

SenanayakeiG.. Review of theory and practice of measuring proton activity and pH in concentrated chloride solutions and application to oxide leaching [J]. Minerals Engineering, 2007, 20(7): 634-645

[15]

TuranM. D., AltundoganH. S., TqmenF.. Recovery of zinc and lead from zinc plant residue [J]. Hydrometallurgy, 2004, 75(1/2/3/4): 169-176

[16]

RusenA., SunkarA. S., TopkayaY. A.. Zinc and lead extraction from Çinkur leach residues by using hydrometallurgical method [J]. Hydrometallurgy, 2008, 93(1/2): 45-50

[17]

ParkY. J.. Stabilization of a chlorine-rich fly ash by colloidal silica solution [J]. Journal of Hazardous Materials, 2009, 162(2/3): 819-822

[18]

PalmaL. D., Ferrantelli MerliP., BiancifioriC. F.. Recovery of EDTA and metal precipitation from soil flushing solutions [J]. Journal of Hazardous Materials B, 2003, 103(1/2): 153-168

[19]

ZengQ. R., SauveS., AllenH. E., HendershotW. H.. Recycling EDTA solutions used to remediate metal-polluted soils [J]. Environmental Pollution, 2005, 133(2): 225-231

[20]

RumballJ. A., RichmondG. D.. Measurement of oxidation in a base metal flotation circuit by selective leaching with EDTA [J]. International Journal of Mineral Processing, 1996, 48(1/2): 1-20

[21]

GreetC., SmartR. S. C.. Diagnostic leaching of galena and its oxidation products with EDTA [J]. Minerals Engineering, 2002, 15(7): 515-522

[22]

FedieK. K., EkbergC., SkarnemarkG., SteenariB. M.. Removal of hazardous metals from MSW fly ash-An evaluation of ash leaching methods [J]. Journal Hazardous Materials, 2010, 173(1/2/3): 310-317

[23]

GuoZ.-h., PanF.-k., XiaoX.-y., ZhangL., JiangK.-qi.. Optimization of brine leaching of metals from hydrometallurgical residue [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(10): 1-6

[24]

NowackB., SchulinR., RobinsonB. H.. Critical assessment of chelant-enhanced metal phytoextraction [J]. Environmental Science Technology, 2006, 40(17): 5225-5232

[25]

FinžgarN., LeštanD.. Heap leaching of Pb and Zn contaminated soil using ozone/UV treatment of EDTA extractants [J]. Chemosphere, 2006, 63(10): 1736-1743

[26]

FinžgarN., LeštanD.. Multi-step leaching of Pb and Zn contaminated soils with EDTA [J]. Chemosphere, 2007, 66(5): 824-832

[27]

Núňez-LópezR. A., MeasY., GamaS. C., BorgesR. O., OlguínE. J.. Leaching of lead by ammonium salts and EDTA from Salvinia minima biomass produced during aquatic phytoremediation [J]. Journal Hazardous Materials, 2008, 154(1/2/3): 623-632

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/