Synthesis and electrochemical performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material for lithium ion batteries

Chuan-yue Hu , Jun Guo , Si-jun Li , Yang-xi Peng , Jin Wen

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (7) : 1791 -1795.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (7) : 1791 -1795. DOI: 10.1007/s11771-012-1209-9
Article

Synthesis and electrochemical performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material for lithium ion batteries

Author information +
History +
PDF

Abstract

The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized successfully by combination of wet process and solid-state reaction at high temperature, and its electrochemical performance was investigated primarily. Li2Mg0.15Mn0.4Co0.45SiO4/C composite materials deliver a charge capacity of 302 mA·h/g and a discharge capacity of 171 mA·h/g in the first cycle. The discharge capacity is stabilized at about 100 mA·h/g after 10 cycles at a current density of 10 mA/g in the voltage of 1.5–4.8 V vs Li/Li+. The results show that Mg-substitution for the Co ions in Li2Mn0.4Co0.6SiO4 improves the stabilization of initial structure and the electrochemical performance.

Keywords

lithium ion battery / Li2Mg0.15Mn0.4Co0.45SiO4/C / cathode material / synthesis

Cite this article

Download citation ▾
Chuan-yue Hu, Jun Guo, Si-jun Li, Yang-xi Peng, Jin Wen. Synthesis and electrochemical performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material for lithium ion batteries. Journal of Central South University, 2012, 19(7): 1791-1795 DOI:10.1007/s11771-012-1209-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KoyamaY., MakimuraY., TanakaI., AdachiH., OhzukuT.. Systematic research on insertion materials based on superlattice models in a phase triangle of LiCoO2-LiNiO2-LiMnO2. I. First-principles calculation on electronic and crystal structures, phase stability and new LiNi1/2Mn1/2O2 material [J]. J Electrochem Society A, 2004, 151(9): 1499-1506

[2]

ChangZ.-r., ChenZ.-j., WuF., TangH.-w., ZhuZ.-h., YuanX.-z., WangH.-jiang.. Synthesis and characterization of high-density non-spherical Li(Ni1/3Co1/3Mn1/3)O2 cathode material for lithium ion batteries by two-step drying method [J]. Electrochimica Acta, 2008, 53: 5927-5933

[3]

ChungK.-y., KimK.-bum.. Investigations into capacity fading as a result of a Jahn-Teller distortion in 4 V LiMn2O4 thin film electrodes [J]. Electrochimica Acta, 2004, 4(20): 3327-3337

[4]

PadhiA. K., NanjundaswamyK. S., GoodenoughJ. B.. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J Electrochem Soc, 1997, 144: 1188-1194

[5]

AmineK., YasudaH., YamachiM.. Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries [J]. Electrochem Solid-State Lett, 2000, 3: 178-179

[6]

LiG.-h.. HIDETO AZUMA, MASAYUKI TOHDA. LiMnPO4 as the cathode for lithium batteries [J]. Electrochem Solid-State Lett A, 2002, 5: 135-137

[7]

ZhangZ. R., GongZ. L., YangYong.. Electrochemical performance and surface properties of bare and TiO2-Coated cathode materials in lithium-ion batteries [J]. J Phys Chem B, 2004, 108: 17546-17552

[8]

LiY.-x., GongZ.-l., YangYong.. Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries [J]. J of Power Sources, 2007, 174: 528-532

[9]

NytenA., AbouimraneA., ArmandM., GustaffsonT., ThomasJ. O.. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material [J]. Electrochem Commun, 2005, 7: 156-160

[10]

DominkoR., BeleM., GaberscekM., MedenA., RemskarM., JamnikJ.. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [J]. Electrochem Commun, 2006, 8: 217-222

[11]

GongZ.-l., LiY.-x., YongYong.. Synthesis and characterization of Li2MnxFe1−xSiO4 as a cathode material for lithium-ion batteries [J]. Electrochem Solid-State Letters A, 2006, 9: 542-544

[12]

KokaljA., DominkoR., MaliG., MedenA., GaberscekM., JamnikJ.. Beyond one-electron reaction in Li cathode materials: Designing Li2MnxFe1−xSiO4, chem. [J]. Mater, 2007, 19: 3633-3640

[13]

NessC., DelobelB., ArmstrongA. R., BruceP. G.. The lithium intercalation compound Li2CoSiO4 and its behaviour as a positive electrode for lithium batteries [J]. Chem Commun (Camb), 2007, 46: 4890-4892

[14]

GongZ.-l., LiY.-x., YongYong.. Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries [J]. J of Power Sources, 2007, 174: 524-527

[15]

WuS.-q., ZhuZ.-z., YangY., HouZ.-feng.. Effects of Na-substitution on structural and electronic properties of Li2CoSiO4 cathode material [J]. Trans Nonferrous Met Soc China, 2009, 19: 182-186

[16]

ZaghibK., Ait SalahA., RavetN., MaugerA., GendronF., JulienC. M.. Structural, magnetic and electrochemical properties of lithium iron orthosilicate [J]. J Power Sources, 2006, 160: 1381-1386

[17]

Arroyo de DompabloM. E., ArmandM., TarasconJ. M., AmadorU.. On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni) [J]. Electrochem Commun, 2006, 8: 1292-1298

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/