Improvement of chromium biosorption through protoplast electrofusion between Candida tropicalis and Candida lipolytica

Bao-yan He , Hua Yin , Feng Yang , Jin-shao Ye , Hui Peng , Xian-yan Lu , Na Zhang

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (6) : 1693 -1701.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (6) : 1693 -1701. DOI: 10.1007/s11771-012-1195-y
Article

Improvement of chromium biosorption through protoplast electrofusion between Candida tropicalis and Candida lipolytica

Author information +
History +
PDF

Abstract

Protoplasts from Candida tropicalis and Candida lipolytica were fused under an optimized electrofusion (electrical pulse strength 6 kV/cm, pulse duration time 40 μs and pulse times 5) and then regenerated on YEPD media for achieving new genotypes with higher chromium loading capacity. A target fusant RHJ-004 was screened out by its chromium resistance and chromium-sorbing capacity tests for further research. The comparative study of applicability shows that the fusant has better performance than its parent strains in respect of solution pH, biomass concentration and chromium loading capacity. Especially for treating low concentration Cr(VI) (≤20 mg/L), above 80% chromium is sequestered from the aqueous phase at pH 1–9. Atomic force microscopy (AFM) visualizes the distribution of chromium on the binding sites of the cells, suggesting that the altered surface structure and intracellular constitutes of the fusant associate with its increased biosorption capacity. The rapid biosorption processes of chromium follow the Langmuir model well.

Keywords

chromium / biosorption / fusant / protoplast / electrofusion

Cite this article

Download citation ▾
Bao-yan He, Hua Yin, Feng Yang, Jin-shao Ye, Hui Peng, Xian-yan Lu, Na Zhang. Improvement of chromium biosorption through protoplast electrofusion between Candida tropicalis and Candida lipolytica. Journal of Central South University, 2012, 19(6): 1693-1701 DOI:10.1007/s11771-012-1195-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AkarA., CelikS., AkarS. T.. Biosorption performance of surface modified biomass obtained from Pyracantha coccinea for the decolorization of dye contaminated solutions [J]. Chemical Engineering Journal, 2010, 160(2): 466-472

[2]

KumarR., SinghR., KumarN., BishnoiK., BishnoiN. R.. Response surface methodology approach for optimization of biosorption process for removal of Cr(VI), Ni(II) and Zn(II) ions by immobilized bacterial biomass sp. Bacillus brevis [J]. Chemical of Engineering Journal, 2009, 146(3): 401-407

[3]

ShengL., XiaJ.-l., HeH., NieZ.-y., QiuG.-zhou.. Biosorption mechanism of Cr(VI) onto cells of synechococcus sp. [J]. Journal of Central South University of Technology, 2007, 14(2): 157-162

[4]

ZengX.-x., TangJ.-x., LiuX.-d., JiangPei.. Isolation, identification and characterization of cadmium-resistant pseudomonas aeruginosa stains E1 [J]. Journal of Central South University of Technology, 2009, 16(3): 416-421

[5]

SariA., UluozlüÖ. D., TÜZEMM.. Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass [J]. Chemical Engineering Journal, 2011, 167(1): 155-161

[6]

TerpitzU., RaimundaD., WesthoffM., SukhorukovV. L., BeaugëL., BambergE., ZimmermannD.. Electrofused giant protoplasts of Saccharomyces cerevisiae as a novel system for electrophysiological studies on membrane proteins [J]. Biochimica et Biophysica. Acta (BBA)-Biomembranes, 2008, 1778(6): 1493-1500

[7]

AkarT., KaynakZ., UlusoyS., YuvaciD., OzsariG., AkarS. T.. Enhanced biosorption of nickel(II) ions by silica-gelimmoblized waste biomass: Biosorption characteristics in batch and dynamic flow mode [J]. Journal of Hazardous Materials, 2009, 163(2/3): 1134-1141

[8]

Aranda-garcíaE., Netzahuatl-MuñozA. R., Cristiani-UrbinaM. D. C., Morales-barreraL., Pineda-amachoG., Cristiani-UrbinaE.. Bioreduction of Cr(VI) and chromium biosorption by acorn shell of Quercus crassipes humb. & bonpl [J]. Journal of Biotechnology, 2010, 150(Supplement1): 228

[9]

SunX.-f., LiuC.-y., MaY., WangS.-g., GaoB.-y., LiX.-ming.. Enhanced Cu(II) and Cr(VI) biosorption capacity on poly(ethylenimine) grafted aerobic granular sludge [J]. Colloids and Surfaces B: Biointerfaces, 2011, 82(2): 456-462

[10]

SinghaB., DasS. K.. Biosorption of Cr(VI) ions from aqueous solutions: Kinetics, equilibrium, thermodynamics and desorption studies [J]. Colloids and Surfaces B: Biointerfaces, 2011, 84(1): 221-232

[11]

TronteljK., RebersekM., KanduserM., SerbecV. C.. Optimization of bulk cell electrofusion in vitro for production of human-mouse heterophybridoma cells [J]. Bioelectrochemistry, 2008, 74(1): 124-129

[12]

AnayurtR. A., SariA., TuzenM.. Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass [J]. Chemical Engineering Journal, 2009, 151(1/2/3): 255-261

[13]

WangX.-s., TangY.-p., TaoS.-rong.. Kinetics, equilibrium and thermodynamic study on removal of Cr(VI) from aqueous solutions using low-cost adsorbent alligator weed [J]. Chemical Engineering Journal, 2009, 148(2/3): 217-225

[14]

YinH., HeB.-y., LuX.-y., PengH., YeJ.-s., YangFeng.. Imporvement of chromium biosorption by UV-HNO2 cooperative mutagenesis in Candida utilis [J]. Water Research, 2008, 42(14): 3981-3989

[15]

BlázquezG., HernáinzF., CaleroM., Martín-LaraM. A., TenorioG.. The effect of pH on the biosorption of Cr(III) and Cr(VI) with olive stone [J]. Chemical Engineering Journal, 2009, 148(2/3): 473-470

[16]

ParkD., YunY. S., ParkJ. M.. Mechanisms of the removal of hexavalent chromium by biomaterials or biomaterial-based activated carbons [J]. Journal of Hazardous Materials, 2006, 137(2): 1254-1257

[17]

LiJ.-p., LinQ.-y., ZhangX.-h., YanY.. Kinetic parameters and mechanisms of the batch biosorption of Cr(VI) and Cr(III) onto Leersia hexandra Swartz biomass [J]. Journal of Colloid and Interface Science, 2009, 333(1): 71-77

[18]

GaoH., LiuY.-g., ZengG.-m., XuW.-h., LiT., XiaW.-bin.. Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste-Rice straw [J]. Journal of Hazardous Materials, 2008, 150(2): 446-452

[19]

Jácome-PilcoC. R., Cristiani-UrbinaE., Flores-CoteraL. B., Velasco-GarcíaR., Ponce-NoyolaT., Cañizares-VillanuevaR. O.. Continuous Cr(VI) removal by Scenedesmus incrassatulus in an airlift photobioreactor [J]. Bioresource Technology, 2009, 100(8): 2388-2391

[20]

ErtugayN., BayhanY. K.. Biosorption of Cr(VI) from aqueous solutions by biomass of Agaricus bisporus [J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 432-439

[21]

ComteS., GuibaudG., BauduM.. Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values [J]. Journal of Hazardous Materials, 2008, 151(1): 185-193

[22]

AminiA., YounesiH., BahramifarN.. Statistical modeling and optimization of the cadmium biosorption process in an aqueous solution using Aspergillus niger [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 337(1/2/3): 67-73

[23]

GuptaS., KumarD., GaurJ. P.. Kinetic and isotherm modeling of lead(II) sorption onto some waste plant materials [J]. Chemical Engineering Journal, 2009, 148(2/3): 226-233

[24]

NuhogluY., MalkocE.. Thermodynamic and kinetic studies for environmentaly friendly Ni(II) biosorption using waste pomace of olive oil factory [J]. Bioresource Technology, 2009, 100(8): 2357-2380

[25]

WonS. W., YunH. J., YunY. S.. Effect of pH on the binding mechanisms in biosorption of Reactive Orange 16 by Corynebacterium glutamicum [J]. Journal of Colloid and Interface Science, 2009, 331(1): 83-89

[26]

BhattiH. N., KhalidR., HanifM. A.. Dynamic biosorption of Zn(II) and Cu(II) using pretreated Rosa gruss an teplitz (red rose) distillation sludge [J]. Chemical Engineering Journal, 2009, 148(2/3): 434-443

[27]

FebriantoJ., KosasihA. N., SunarsoJ., JuY. H.. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies [J]. Journal of Hazardous Materials, 2009, 162(2/3): 616-645

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/