Experimental assessment of two-phase bubble pump for solar water heating

Chung Han-shik , Woo Ju-sik , Shin Yong-han , Kim Jun-hyo , Jeong Hyo-min

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (6) : 1590 -1599.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (6) : 1590 -1599. DOI: 10.1007/s11771-012-1181-4
Article

Experimental assessment of two-phase bubble pump for solar water heating

Author information +
History +
PDF

Abstract

The research goal is to develop a new solar water heater system (SWHS) that uses a solar bubble pump instead of an electric pump. The pump is powered by the steam produced from an evacuated tube collector. Therefore, heat could be transferred downward from the collector to a hot water storage tank. The designed system consists of two sets of heat-pipe evacuated tube collectors, a solar bubble pump installed at an upper level and a water storage tank with a heat exchanger at a lower level. Discharge heads of 1 and 5 m were tested. The bubble pump could operate at the collector temperature of about 90–100 °C and vapor gage pressure of 80–90 kPa. It is found that water circulation within the SWHS depends on the incident solar intensity and system discharge head. Experimental investigations are conducted to obtain the system thermal efficiencies from the hourly, daily and long-term performance tests. The thermal performance of the proposed system is compared with conventional solar water heaters. The results show that the proposed system achieves system characteristic efficiency of 10% higher than that of the conventional systems using electric pump if taking the consumption of electric power into account. And the former is a zero carbon system.

Keywords

two-phase bubble pump / solar water heater system (SWHS) / zero carbon

Cite this article

Download citation ▾
Chung Han-shik, Woo Ju-sik, Shin Yong-han, Kim Jun-hyo, Jeong Hyo-min. Experimental assessment of two-phase bubble pump for solar water heating. Journal of Central South University, 2012, 19(6): 1590-1599 DOI:10.1007/s11771-012-1181-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LeeD. W., SharmaA.. Thermal performances of the active and passive water heating systems based on annual operation [J]. Sol Energy, 2007, 81: 207-215

[2]

KalogirouS. A.. Long term performance prediction of forced circulation solar domestic water heating systems using artificial neural networks [J]. Applied Energy, 2000, 66: 63-74

[3]

JoshiS. V., BokilR. S., NayakJ. K.. Test standards for thermosyphon-type solar domestic hot water system: Review and experimental evaluation [J]. Sol Energy, 2005, 78: 781-798

[4]

BELESSIOTIS, MATHIOULAKIS, BELESSIOTIS V, MATHIOULAKIS E. Analytical approach of thermosyphon solar domestic hot water system performance [J]. Solar Energy, 2002: 307–315.

[5]

SUMATHY K, VENKATESH A, SRIRAMULU V. The importance of the condenser in a solar water pump [J]. Energy Conversion and Management, 1995: 1167–1173.

[6]

SUMATHY K, VENKATESH A, SRIRAMULU V. A solar thermal water pump [J]. Applied Energy, 1996: 235–243.

[7]

SUMATHY K, VENKATESH A, SRIRAMULU V. Heat-transfer analysis of a flat-plate collector in a solar thermal pump [J]. Energy, 1994: 983–991.

[8]

SumathyK.. Experimental studies on a solar thermal water pump [J]. Appl Therm Eng, 1999, 19: 449-459

[9]

WongY. W., SumathyK.. Performance of solar water pumps with ethyl-ether as working fluid [J]. Renew Energy, 2001, 22: 389-394

[10]

WongY. W., SumathyK.. Thermodynamic analysis and optimization of solar thermal water pump [J]. Appl Therm Eng, 2001, 21: 613-627

[11]

PickenD. J., SeareK. D. R., GotoF.. Design and development of a water piston solar powered steam pump [J]. Sol Energy, 1997, 61(3): 219-227

[12]

LiengjindathawornS., KirtikaraK., NamprakaiP., KiatsiriroatT.. Parametric studies of a pulsating-steam water pump [J]. Ambient Energy, 2002, 23(1): 37-46

[13]

NattaphonR., PichaiN., NarisP.. Experimental studies of a new solar water heater system using a solar water pump [J]. Energy, 2008, 33: 639-646

[14]

WongY. W., SumathyK.. Solar thermal water pumping systems: A review [J]. Renew Sustain Energy Rev, 1999, 3(2/3): 185-217

[15]

NortonB., ProbertS. D.. Recent advances in circulation solar energy water heater design [J]. Appl Energy, 1983, 15(1): 15-42

[16]

ZerroukiA., BoumedienA., BouhadefK.. The natural circulation solar water heater model with linear temperature distribution [J]. Renewable Energy, 2002, 26(4): 549-559

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/