Theoretical and experimental study of initial cracking mechanism of an expansive soil due to moisture-change

Jun-hua Wu , Jun-ping Yuan , Charles W. W. Ng

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (5) : 1437 -1446.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (5) : 1437 -1446. DOI: 10.1007/s11771-012-1160-9
Article

Theoretical and experimental study of initial cracking mechanism of an expansive soil due to moisture-change

Author information +
History +
PDF

Abstract

Swelling and shrinkage due to moisture-change is one of the characteristics of the expansive soil, which is similar to the behavior of most materials under thermal effect. If the deformation is restricted, stress in expansive soil is caused by the swell-shrinking. The stress is defined as “moisture-change stress” and is adopted to analyze swell-shrinkage deformation based on the elasticity mechanics theory. The state when the total stress becomes equal to the soil tensile strength is considered as the cracking criterion as moisture-change increases. Then, the initial cracking mechanism due to evaporation is revealed as follows: Different rates of moisture loss at different depths result in greater shrinkage deformation on the surface while there is smaller shrinkage deformation at the underlayer in expansive soil; cracks will grow when the nonuniform shrinkage deformation increases to a certain degree. A theoretical model is established, which may be used to calculate the stress caused by moisture-change. The depth of initial cracks growing is predicted by the proposed model in expansive soil. A series of laboratory tests are carried out by exposing expansive soil samples with different moisture-changes. The process of crack propagation is investigated by resistivity method. The test results show good consistency with the predicted results by the proposed theoretical model.

Keywords

expansive soil / swell-shrinking deformation / moisture-change / crack / resistivity

Cite this article

Download citation ▾
Jun-hua Wu, Jun-ping Yuan, Charles W. W. Ng. Theoretical and experimental study of initial cracking mechanism of an expansive soil due to moisture-change. Journal of Central South University, 2012, 19(5): 1437-1446 DOI:10.1007/s11771-012-1160-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiS.-lin.Studies on the engineering geology of expansive soil in China [M], 1992NanjingJiangsu Science and Technology Publishing House2-16

[2]

MorrisP. H., GrahamJ., WilliamsD. J.. Cracking in drying soil [J]. Canadian Geotechnical Journal, 1992, 29: 263-277

[3]

YaoH.-l., ZhengS.-h., ChenS.-yi.. Analysis on the slope stability of expansive soil considering cracks and infiltration of rain [J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 606-609

[4]

ChenS.-s., ZhengC.-f., WangG.-li.. Researches on long-term strength deformation characteristics and stability of expansive soil slopes [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 795-799

[5]

RitchieJ. T.. Water movement in unsaturated swelling clay soil [J]. Journal of the Soil Science Society of America, 1972, 36: 874-879

[6]

XieH.-f., RaoQ.-h., XieQ., LiZ.-y., WangZhi.. Effect of holes on in-plane shear (Mode II) crack sub-critical propagation of rock [J]. Journal of Central South University of Technology, 2008, 15(s1): 453-456

[7]

ChenF., XuJ.-cheng.. Computer controlled method for measurement of surface crack length on plate subjected to fatigue loading [J]. Journal of Central South University of Technology, 1997, 4(2): 141-143

[8]

LeeF. H., LoK. W., LeeS. L.. Tension crack development in soils [J]. Journal of Geotechnical Engineering, ASCE, 1988, 14(8): 915-929

[9]

AyadR., Konrad J M SoulieM.. Desiccation of sensitive clay: Application of the model crack [J]. Canadian Geotechnical Journal, 1997, 34(6): 943-951

[10]

KonradJ. M., AyadR.. An idealized framework for the analysis of cohesive soils undergoing desiccation [J]. Canadian Geotechnical Journal, 1997, 34(4): 477-488

[11]

KonradJ. M., AyadR.. Desiccation of a sensitive clay: Field experimental observations [J]. Canadian Geotechnical Journal, 1997, 34(6): 929-942

[12]

RodriguezR., SanchezM., LedesmaA., LloretA.. Experimental and numerical analysis of desiccation of a mining waste [J]. Canadian Geotechnical Journal, 2007, 44(6): 644-658

[13]

ChenD.-c., ShangS.-p., ZhangC.-qiang.. Effect of vertical load difference on cracking behaviors in multistory masonry buildings and numerical simulation [J]. Journal of Central South University of Technology, 2009, 16(6): 1014-1021

[14]

CharlesW. W. N., BruceM.Advanced unsaturated soil mechanics and engineering [M], 2007LondonSpon Press279-286

[15]

TayY. Y., StewartD. I., CousensT. W.. Shrinkage and desiccation cracking in bentonite-sand landfill liners [J]. Engineering Geology, 2001, 60(1): 263-274

[16]

KODIKARA J K, CHOI X. A simplified analytical model for desiccation cracking of clay layers in laboratory tests [C]// Proceedings of the 4th International Conference on Unsaturated Soils. Carefree, Arizona: Geotechnical Special Publication, 2006: 2558–2569.

[17]

LiP.-y., YangQ., LuanM.-t., WangD.-lin.. Research on influential factors of crack propagation depth of unsaturated expansive soils [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 2967-2972

[18]

YesillerN., MillerC. J.. Desiccation and cracking behavior of three compacted landfill liner soil [J]. Engineering Geology, 2000, 57(2): 105-121

[19]

YuF., ChenS.-x., XuX.-c., YuSong.. Characteristics and mechanism of California bearing ratio of expansive soil [J]. Rock and Soil Mechanics, 2007, 28(6): 1113-1117

[20]

ChenJ.-b., KongL. W., GuoA.-g., ZhaoY.-l., LuH.-bo.. Deformation characteristics of expansive soil slopes under precipitation and evaporation [J]. China Civil Engineering Journal, 2007, 40(11): 70-77

[21]

YaoH.-l., ChengP., WuW.-ping.. A simplified method for predicting heave in expansive soil grounds based on three dimensional shrinkage tests [J]. Rock and Soil Mechanics, 2004, 25(11): 1688-1692

[22]

PanZ. J., XieY. L., YangX. H.. Depth identification of the active and cracking zones in expansive soil from in-situ suction measurement [J]. Journal of Engineering Geology, 2006, 14(2): 206-211

[23]

RhoadesJ. J., ManteghiN. A., ShouseP. J.. Soil electrical conductivity and soil salinity: new formulations and calibrations [J]. Soil Science Society of American Journal, 1989, 53: 433-439

[24]

Abu-hassaneinZ., BensonC., BlotzL.. Electrical resistivity of compacted clays [J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(5): 397-406

[25]

CampanellaR. G., WeemeesI.. Development and use of an electrical resistivity cone for groundwater contamination studies [J]. Canadian Geotechnical Journal, 1990, 27: 557-567

[26]

LiuG.-h., WangZ.-y., HuangJ.-ping.. Research on electrical resistivity feature of soil and its application [J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 83-87

[27]

LiuS.-y., HanL.-h., DuY.-jun.. Experimental study on electrical resistivity of soil-cement [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1921-1926

[28]

ArulmoliK., ArulanandanK., SeedH. B.. New method for evaluating liquefaction potential [J]. Journal of Geotechnical Engineering Division, ASCE, 1985, 111(1): 95-114

[29]

ArchieG.. The electrical resistivity log as an aid in determining some reservoir characteristics [J]. Transactions of American Institute of Mining Engineers, 1942, 146: 54-62

[30]

GeorgeV., Keller, FrankC., FrischknechtF.Electrical methods in geophysical prospecting [M], 1996OxfordPergamon Press123-133

[31]

WaxmanM. H., SmitsL. J. M.. Electrical conductivity in oil-bearing shale sand [J]. Society of Petroleum Engineers Journal, 1968, 65: 1577-1584

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/