A plasticity model for sand-structure interfaces

A. Lashkari

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (4) : 1098 -1108.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (4) : 1098 -1108. DOI: 10.1007/s11771-012-1115-1
Article

A plasticity model for sand-structure interfaces

Author information +
History +
PDF

Abstract

The predictive capacity of numerical analyses in geotechnical engineering depends strongly on the efficiency of constitutive models used for modeling of interfaces behavior. Interfaces are considered as thin layers of the soil adjacent to structures boundary whose major role is transferring loads from structures to soil masses. An interface model within the bounding surface plasticity framework and the critical state soil mechanics is presented. To this aim, general formulation of the interface model according to the bounding surface plasticity theory is described first. Similar to granular soils, it has been shown that the mechanical behavior of sand-structure interfaces is highly affected by the interface state that is the combined influences of density and applied normal stress. Therefore, several ingredients of the model are directly related to the interface state. As a result of this feature, the model is enabled to distinguish interfaces in dense state from those in loose state and to provide realistic predictions over wide ranges of density and normal stress values. In evaluation of the model, a reasonable correspondence between the model predictions and the experimental data of various research teams is found.

Keywords

soil-structure interface / sand / dilatancy / bounding surface plasticity

Cite this article

Download citation ▾
A. Lashkari. A plasticity model for sand-structure interfaces. Journal of Central South University, 2012, 19(4): 1098-1108 DOI:10.1007/s11771-012-1115-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PotyondyJ. G.. Skin friction between various soils and construction material [J]. Géotechnique, 1961, 11(4): 331-53

[2]

DesaiC. S., DrummE. C., ZamanM. M.. Cyclic testing and modeling of interfaces [J]. J Geotech Eng ASCE, 1985, 111(6): 793-815

[3]

GhionnaV. N., MortaraG.. An elastoplastic model for sand-structure interface behavior [J]. Géotechnique, 2002, 52(1): 41-50

[4]

HuL., PuJ.. Testing and modeling of soil-structure interface [J]. ASCE J Geotech Geoenviron Eng, 2004, 130(8): 851-860

[5]

MortaraG., MangiolaA., GhionnaV. N.. Cyclic shear stress degradation and post-cyclic behavior from sand-steel interface direct shear tests [J]. Canadian Geotechnical Journal, 2007, 44: 739-752

[6]

BrumundW. F., LeonardsG. A.. Experimental study of static and dynamic friction between sand and typical construction materials [J]. J Test Eval, 1973, 1(2): 162-165

[7]

ZeghalM., EdilT.. Soil structure interaction analysis: Modeling the interface [J]. Can Geotech J, 2002, 39: 620-628

[8]

YoshimiY., KishidaT.. A ring torsion apparatus for evaluating friction between soil and metal surfaces [J]. Geotech Test J, 1981, 4(4): 145-152

[9]

KishidaH., UesugiM.. Tests of interfaces between sand and steel in simple shear apparatus [J]. Géotechnique, 1987, 37(1): 45-52

[10]

EvginE., FakharianK.. Effect of stress path on the behavior of sand-steel interface [J]. Can Geotech J, 1996, 33: 853-865

[11]

DejongJ. T., WestgateZ. J.. Role of initial state, material properties, and confinement condition on local and global soil structure interface behavior [J]. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1646-1660

[12]

JensenR. P., BosscherP. J., PleshaM. E., EdilT. B.. DEM simulation of granular media-structure interface: Effect of structure roughness and particle shape [J]. Int J Numer Anal Meth Geomech, 1999, 23: 531-547

[13]

WangJ., DoveJ. E., GutierrezM. S.. Determining particulate-solid interphase strength using shear induce anisotropy [J]. Granular Matter, 2007, 9: 231-240

[14]

CloughG. W., DuncanJ. M.. Finite element analysis of retaining wall behavior [J]. J Soil Mech & Found Div ASCE, 1971, 97(SM12): 1657-1672

[15]

BrandtJ. R. T.Behavior of soil-concrete interfaces [D], 1985CanadaUniversity of Alberta

[16]

GhaboussiJ., WilsonE. L., IsenbergJ.. Finite element for rock joints and interfaces [J]. J Soil Mech & Found Div ASCE, 1973, 99(SM10): 833-848

[17]

de GennaroV., FrankR.. Elasto-plastic analysis of the interface behavior between granular media and structure [J]. Comput Geotech, 2002, 29: 547-572

[18]

DesaiC. S., MaY.. Modeling of joints and interfaces using the disturbed state concept [J]. Int J Numer Anal Meth Geomech, 1992, 16: 623-653

[19]

MortaraG., BoulonM., GhionnaV. N.. A 2-D constitutive model for cyclic interface behavior [J]. Int J Numer Anal Meth Geomech, 2002, 26: 1071-1096

[20]

LiuH., SongE., LingH. I.. Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics [J]. Mechanics Research Communications, 2006, 33: 515-531

[21]

LashkariA.. Modeling sand-structure interfaces under rotational shear [J]. Mechanics Research Communications, 2010, 37: 22-37

[22]

DafaliasY. F., PopovE. P.. A model of nonlinearly hardening materials for complex loadings [J]. Acta Mechanica, 1975, 21: 173-192

[23]

DafaliasY. F.. Bounding surface plasticity. I: Mathematical foundation and hypoplasticity [J]. ASCE J Engng Mech, 1986, 112(9): 966-987

[24]

ManzariM. T., DafaliasY. F.. A critical state two surface plasticity model for sands [J]. Géotechnique, 1997, 47(2): 255-272

[25]

DafaliasY. F., ManzariM. T.. Simple plasticity sand model accounting for fabric change effects [J]. ASCE J Engng Mech, 2004, 130(6): 622-634

[26]

GajoA., WoodD. M.. Severn-Trent sand: A kinematic-hardening constitutive model: The q-p formulation [J]. Géotechnique, 1999, 49(5): 595-614

[27]

GajoA., WoodD. M.. A kinematic hardening constitutive model for sands: A multiaxial formulation [J]. Int J Numer Anal Methods Geomech, 1999, 23: 925-965

[28]

LiX. S.. A sand model with state dependent dilatancy [J]. Géotechnique, 2002, 52(3): 173-186

[29]

LashkariA.. On the modeling of the state dependency of granular soils [J]. Computers and Geotechnics, 2009, 36: 1237-1245

[30]

LiX. S., DafaliasY. F.. Constitutive modeling of inherently sand behavior [J]. ASCE J Geotech Geoenviron Eng, 2002, 128(10): 868-880

[31]

DafaliasY. F., PapadimitriouA. G., LiX. S.. Sand plasticity model accounting for inherent fabric anisotropy [J]. ASCE J Engng Mech, 2004, 130(11): 1319-1333

[32]

ChiuC. F., NgC. W. W.. A state-dependent elasto-plastic model for saturated and unsaturated soils [J]. Géotechnique, 2003, 53(9): 809-829

[33]

TaiebatM., DafaliasY. F.. SANISAND: Simple anisotropic sand plasticity model [J]. Int J Numer Anal Meth Geomech, 2008, 32(8): 915-948

[34]

YinZ.-z., ZhuH., XuG.-hua.. A study of deformation in the interface between soil and concrete [J]. Computers and Geotechnics, 1995, 17(1): 75-92

[35]

PastorM., ManzanalD., Fernández MerodoJ. A., MiraP., BlancT., DrempeticV., PastorM. J., HaddadB., SánchezM.. From solids to fluidized soils: Diffuse failure mechanisms in geostructures with applications to fast catastrophic landslides [J]. Granular Matter, 2010, 12(3): 211-228

[36]

ShahrourI., RezaieF.. An elastoplastic constitutive relation for the soil-structure interface under cyclic loading [J]. Computers and Geotechnics, 1997, 21: 21-39

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/