Self-adaptive learning based immune algorithm
Bin Xu , Yi Zhuang , Yu Xue , Zhou Wang
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (4) : 1021 -1031.
Self-adaptive learning based immune algorithm
A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned problems with the high robustness. The SALIA algorithm adopted a mutation strategy pool which consists of four effective mutation strategies to generate new antibodies. A self-adaptive learning framework is implemented to select the mutation strategies by learning from their previous performances in generating promising solutions. Twenty-six state-of-the-art optimization problems with different characteristics, such as uni-modality, multi-modality, rotation, ill-condition, mis-scale and noise, are used to verify the validity of SALIA. Experimental results show that the novel algorithm SALIA achieves a higher universality and robustness than clonal selection algorithms (CLONALG), and the mean error index of each test function in SALIA decreases by a factor of at least 1.0×107 in average.
immune algorithm / multi-modal optimization / evolutionary computation / immune secondary response / self-adaptive learning
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
WANG Yu, LI Bin, WEISE T, WANG Jian-yu, YUAN Bo, TIAN Qiong-jie. Self-adaptive learning based particle swarm optimization [J]. Information Sciences (Accepted). |
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
/
| 〈 |
|
〉 |