Large scale synthesis of ZnO nanoparticles via homogeneous precipitation

Yi-ming Wang , Jian-hua Li , Ruo-yu Hong

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (4) : 863 -868.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (4) : 863 -868. DOI: 10.1007/s11771-012-1084-4
Article

Large scale synthesis of ZnO nanoparticles via homogeneous precipitation

Author information +
History +
PDF

Abstract

In order to synthesize ZnO nanoparticles economically, industrial-grade zinc sulfate and urea were utilized to synthesize ZnO precursors in a stirred-tank reactor or a Teflon-lined autoclave at 100–180 °C under complete sealing condition. The ZnO precursors were calcined at 450 °C for 3 h to synthesize ZnO nanoparticles. The composition of the precursors and the formation mechanism of ZnO were studied by thermogravimetric analysis and Fourier transform infrared spectroscopy. The results of X-ray diffraction, transmission electron microscopy and scanning electron microscopy of the ZnO powders demonstrate that high-purity zincite ZnO nanoparticles are synthesized. Orthogonal experiments were performed to find out the optimal conditions for the maximum yield and the minimum size. The effect of temperature on the size of ZnO nanoparticles was investigated. The results show that a higher temperature is propitious to obtain smaller nanoparticles.

Keywords

ZnO / homogeneous synthesis / sealing condition / thermogravimetric analysis

Cite this article

Download citation ▾
Yi-ming Wang, Jian-hua Li, Ruo-yu Hong. Large scale synthesis of ZnO nanoparticles via homogeneous precipitation. Journal of Central South University, 2012, 19(4): 863-868 DOI:10.1007/s11771-012-1084-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AmraniB., ChiboubI., HiadsiS., BenmessabihT., HamdadouN.. Structural and electronic properties of ZnO under high pressures [J]. Solid State Communications, 2006, 137(7): 395-399

[2]

SansJ. A., SeguraA., ManjónF. J., MaríB., MuńozA., Herrera-cabreraM. J.. Optical properties of wurtzite and rock-salt ZnO under pressure [J]. Microelectronics Journal, 2005, 36(10): 928-932

[3]

DaneshvarN., SalariD., KhataeeA. R.. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2 [J]. Journal of Photochemistry and Photobiology A, 2004, 162(2/3): 317-322

[4]

KimJ. H., ChoiW. C., KimH. Y., KangY., ParkY. K.. Preparation of mono-dispersed mixed metal oxide micro hollow spheres by homogeneous precipitation in a micro precipitator [J]. Powder Technology, 2005, 153(3): 166-175

[5]

MondelaersD., VanhoylandG., van den RulH., HaenJ. D., van BaelM. K., MullensJ., van PouckeL. C.. Synthesis of ZnO nanopowder via an aqueous acetate-citrate gelation method [J]. Materials Research Bulletin, 2002, 37(5): 901-914

[6]

HongR. Y., PanT. T., QianJ. Z., LiH. Z.. Synthesis and surface modification of ZnO nanoparticles [J]. Chemical Engineering Journal, 2006, 119(2/3): 71-81

[7]

WangC. L., MaoB. D., WangE. B., KangZ. H., TianC. G.. Solution synthesis of ZnO nanotubes via a template-free hydrothermal route [J]. Solid State Communications, 2007, 141(11): 620-623

[8]

MengX. Q., ZhaoD. X., ShenD. Z., ZhangJ. Y., LiB. H., WangX. H., FanX. W.. ZnO nanorod arrays grown under different pressures and their photoluminescence properties [J]. Journal of Luminescence, 2007, 122/123: 766-769

[9]

RataboulF., NayralC., CasanoveM. J., MaisonnatA., ChaudretB.. Synthesis and characterization of monodisperse zinc and zinc oxide nanoparticles from the organometallic precursor [Zn(C6H11)2] [J]. Journal of Organometallic Chemistry, 2002, 643/644: 307-312

[10]

ZhouZ. W., PengW. M., KeS. Y., DengH.. Tetrapod-shaped ZnO whisker and its composites [J]. Journal of Materials Processing Technology, 1999, 89/90: 415-418

[11]

Muńoz-SanjoséV., Tena-ZaeraR., Martínez-TomásC., Zúńiga-PérezJ., HassaniS., TribouletR.. A new approach to the growth of ZnO by vapour transport [J]. Physica Status Solidi (C), 2005, 2(3): 1106-1114

[12]

ZhengW. W., GuoF., QianY. T.. Growth of bulk ZnO single crystals via a novel hydrothermal oxidative pressure-relief route [J]. Advanced Functional Materials, 2005, 15(2): 331-335

[13]

LiM., LiuX. L., CuiD. L., XuH. Y., JiangM. H.. Preparation of ZnO bulk porous nanosolids of different pore diameters by a novel solvothermal hot press (STHP) method [J]. Materials Research Bulletin, 2006, 41(7): 1259-1265

[14]

VorobyovaS. A., LesnikovichA. I., MushnskiiV. V.. Interphase synthesis and characterization of zinc oxide [J]. Materials Letters, 2004, 58(6): 863-866

[15]

HughesW. L., WangZ. L.. Formation of piezoelectric single-crystal nanorings and nanobows [J]. Journal of the American Chemical Society, 2004, 126(21): 6703-6709

[16]

GaoP. X., MaiW. J., WangZ. L.. Superelasticity and nanofracture mechanics of ZnO nanohelices [J]. Nano Letters, 2006, 6(11): 2536-2543

[17]

LaoC. S., LiuJ., GaoP. X., ZhangL. Y., DavidovicD., TummalaR., WangZ. L.. ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes. Nano Letters, 2006, 6(2): 263-266

[18]

KaleR. B., HsuY. J., LinY. F., LuS. Y.. Synthesis of stoichiometric flowerlike ZnO nanorods with hundred per cent morphological yield [J]. Solid State Communications, 2007, 142(5): 302-305

[19]

WahabR., AnsariS. G., KimY. S., SeoH. K., KimG. S., KhangG., ShinH. S.. Low temperature solution synthesis and characterization of ZnO nano-flowers [J]. Materials Research Bulletin, 2007, 42(9): 1640-1648

[20]

GengB. Y., LiuX. W., WeiX. W., WangS. W.. Large-scale synthesis of single-crystalline ZnO nanotubes based on polymer-inducement [J]. Materials Research Bulletin, 2006, 41(10): 1979-1983

[21]

RenX. L., HanD., ChenD., TangF. Q.. Large-scale synthesis of hexagonal cone-shaped ZnO nanoparticles with a simple route and their application to photocatalytic degradation [J]. Materials Research Bulletin, 2007, 42(5): 807-813

[22]

QiH. X., LiQ. S., WangC. F., ZhangL. C., LvL.. Effects of oxygen pressure on n-ZnO/p-Si heterojunctions fabricated using pulsed laser deposition [J]. Vacuum, 2007, 81(8): 943-946

[23]

SinghP., ChawlaA. K., KaurD., ChandraR.. Effect of oxygen partial pressure on the structural and optical properties of sputter deposited ZnO nanocrystalline thin films [J]. Materials Letters, 2007, 61(10): 2050-2053

[24]

HuX. L., ZhuY. J., WangS. W.. Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods [J]. Materials Chemistry and Physics, 2004, 88(2/3): 421-426

[25]

ZhangJ. W., WangW., ZhuP. L., ChenJ. M., ZhangZ. J., WuZ. S.. Synthesis of small diameter ZnO nanorods via refluxing route in alcohol-water mixing solution containing zinc salt and urea [J]. Materials Letters, 2007, 61(2): 592-594

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/