Design of small-area and high-efficiency DC-DC converter for 1 T SRAM

Jae-hyung Lee , Li-yan Jin , Yi-ning Yu , Ji-hye Jang , Kwang-il Kim , Pan-bong Ha , Young-hee Kim

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (2) : 417 -423.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (2) : 417 -423. DOI: 10.1007/s11771-012-1020-7
Article

Design of small-area and high-efficiency DC-DC converter for 1 T SRAM

Author information +
History +
PDF

Abstract

The direct current-direct current (DC-DC) converter is designed for 1 T static random access memory (SRAM) used in display driver integrated circuits (ICs), which consists of positive word-line voltage (VPWL), negative word-line voltage (VNWL) and half-VDD voltage (VHDD) generator. To generate a process voltage temperature (PVT)-insensitive VPWL and VNWL, a set of circuits were proposed to generate reference voltages using bandgap reference current generators for respective voltage level detectors. Also, a VPWL regulator and a VNWL charge pump were proposed for a small-area and low-power design. The proposed VPWL regulator can provide a large driving current with a small area since it regulates an input voltage (VCI) from 2.5 to 3.3 V. The VNWL charge pump can be implemented as a high-efficiency circuit with a small area and low power since it can transfer pumped charges to VNWL node entirely. The DC-DC converter for 1 T SRAM were designed with 0.11 μm mixed signal process and operated well with satisfactory measurement results.

Keywords

1 T-static random access memory / direct current-direct current converter / positive word-line voltage / negative word-line voltage / half-VDD generator

Cite this article

Download citation ▾
Jae-hyung Lee, Li-yan Jin, Yi-ning Yu, Ji-hye Jang, Kwang-il Kim, Pan-bong Ha, Young-hee Kim. Design of small-area and high-efficiency DC-DC converter for 1 T SRAM. Journal of Central South University, 2012, 19(2): 417-423 DOI:10.1007/s11771-012-1020-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KIM B S, KIM Y G, HONG S Y. Low power 260k color TFT LCD one-chip driver IC [C]// Proceedings of 5th International Symposium on Quality Electronic Design. San Jose: USA, 2004: 126–130.

[2]

XIAO Weng-yu, CHEN Zhi-liang. A mixed-signal driver chip for 65k-colr passive-matrix OLED [C]// Proceedings of 6th International Conference on ASIC. Shanghai: China, 2005: 473–477.

[3]

LeeJ. H., JeonH. G., KimK. I.. Design of a redundancy control circuit for 1T-SRAM repair using electrical fuse programming [J]. J the Korean Institute of Maritime Information and Communication Sciences, 2010, 14(8): 1877-1886

[4]

KwonO. S., MinK. S.. Dataline redundancy circuit using simple shift logic circuit for dual-port 1T-SRAM embedded in display ICs [J]. Institute of Korean Electrical and Electronics Engineers, 2007, 11(4): 129-136

[5]

ChaS. R., LeeB. S., KimH. Y., ChoiH. Y.. Design of graphic memory for QVGA-Scale LCD driver IC [J]. The Institute of Electronics Engineers of Korea, 2008, 31(1): 589-590

[6]

LEUNG W, HSU F, JONES M E. The ideal SoC memory: 1T-SRAM [C]// Proceeding of 13th annual IEEE international ASIC/SoC Conference. Arlington: USA, 2000: 32–36.

[7]

SOMASEKHAR D, LU S L, BLOECHEL B, LAI K, BORKAR S, DE V. Planar 1T-Cell DRAM with MOS storage capacitors in a 130 nm logic technology for high density microprocessor caches [C]// Proc ESSCIRC. Firenze: University of Pavia, 2002: 127–130.

[8]

CHWANG R, CHOI M, CREEK D, STERN S, PELLEY P, SCHUTA J, BOHR M, WARKENTIN P, YU K. A 70ns high density CMOS DRAM [C]// Proceeding of Solid-State Circuits Conference. New York: USA, 1983: 56–57.

[9]

LuN. C. C., ChaoH. H.. Half-VDD bit-line sensing scheme in CMOS DRAM’s [J]. IEEE Journal of Solid-State Circuit, 1984, 19(4): 451-454

[10]

ChoS. I., LeeJ. H., ParkH. J., LimG. H., KimY. H.. Two-phase boosted voltage generator for low-voltage DRAMs [J]. IEEE Journal of Solid-State Circuit, 2003, 38(10): 1726-1729

[11]

KIM T H, LEE J H, HA P B, KIM Y H. A VPP Generator Design for a Low Voltage DRAM [C]// C. the Korean Institute of Maritime Information and Communication Sciences. Busan: Korea, 2007: 776–780. (in Korean)

[12]

LeeT. Y., LeeJ. H., KimJ. H., ShimO. Y., KimT. H., ParkM. H., HaP. B., KimY. H.. A bandgap reference voltage generator design for low voltage SoC [J]. Journal the Korean Institute of Maritime Information and Communication Sciences, 2007, 12(1): 137-142

[13]

KimY. H., ParkH. J., SohnJ. D., ChoiJ. S., ParkC. S., AhnS. H., JeongJ. Y.. Two-phase back-bias generator for low-voltage Gigabit DRAMs [J]. IEEE Electronic Letters, 1998, 34(19): 1831-1833

[14]

NakagomeY., TanakaH., TakeuchiK., KumeE., WatanabeY., KagaT., KawamotoY., MuraiF., IzawaR., HisamotoD., KisuT., NishidaT., TakedaE., ItohK.. An experimental 1.5-V 64-Mb DRAM [J]. IEEE Journal of Solid-State Circuit, 1991, 26(4): 465-472

[15]

LeeJ. H., WooE. C., KangH. G., LimG. H., HaP. B., KimY. H.. A Half-VDD Voltage generator for low-voltage DRAM [C]. Korean Conference on Semiconductor, 2005, Seoul, KCS: 523-524

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/