Preparation process and characterization of new Pt/stainless steel wire mesh catalyst designed for volatile organic compounds elimination

Ting Zhang , Min Chen , Yuan-yuan Gao , Xiao-ming Zheng

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (2) : 319 -323.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (2) : 319 -323. DOI: 10.1007/s11771-012-1007-4
Article

Preparation process and characterization of new Pt/stainless steel wire mesh catalyst designed for volatile organic compounds elimination

Author information +
History +
PDF

Abstract

A novel 0.1% Pd-0.05% (mass fraction) Pt/stainless steel wire mesh catalyst was prepared for volatile organic compounds (VOCs) elimination. The catalyst was synthesized by stainless steel wire mesh as support and then treated by anodic oxidation technology to develop a porous membrane on the support. During the anodic oxidation process, various electrolytes were used to investigate the formation of porous membrane. And the catalytic performance of the catalysts was tested by using toluene and acetone combustion as model reaction. The temperatures of complete toluene and acetone conversion were decreased to 180 °C and 240 °C, respectively. The morphologies of the stainless steel wire mesh supports and catalysts were characterized by means of scanning electron microscopy (SEM) and temperature-programmed reduction (TPR).

Keywords

volatile organic compounds / anodic oxidation / electrolyte / Pd

Cite this article

Download citation ▾
Ting Zhang, Min Chen, Yuan-yuan Gao, Xiao-ming Zheng. Preparation process and characterization of new Pt/stainless steel wire mesh catalyst designed for volatile organic compounds elimination. Journal of Central South University, 2012, 19(2): 319-323 DOI:10.1007/s11771-012-1007-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AgueroF. N., BarberoB. P., GambaroL., CadusL. E.. Catalytic combustion of volatile organic compounds in binary mixtures over MnOx/Al2O3 catalyst [J]. Applied Catalysis B: Environmental, 2009, 91(1/2): 108-112

[2]

SpinicciR., FaticantiM., MariniP., RossiD., PortaP.. Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion [J]. Journal of Molecular Catalysis A: Chemical, 2003, 197(1/2): 147-155

[3]

ZimowskaM., Michalik-zymA., JanikR., MachejT., GurgulJ., SochaR. P., PodobinskiJ., SerwickaE. M.. Catalytic combustion of toluene over mixed Cu-Mn oxides [J]. Catalysis Today, 2007, 119(1/2/3/4): 321-326

[4]

LuoM.-f., HeM., XieY.-l., FangP., JinL.-yun.. Toluene oxidation on Pd catalysts supported by CeO2-Y2O3 washcoated cordierite honeycomb [J]. Applied Catalysis B: Environmental, 2007, 69(3/4): 213-218

[5]

SahaB. P., JohnsonR., GaneshI., RaoG. V. N., BhattacharjeeS., MahajanY. R.. Thermal anisotropy in sintered cordierite monoliths [J]. Materials Chemistry and Physics, 2001, 67(1/2/3): 140-145

[6]

LouisB., ReuseP., Kiwi-MinskerL., RenkenA.. Synthesis of ZSM-5 coatings on stainless steel grids and their catalytic performance for partial oxidation of benzene by N2O [J]. Applied Catalysis A: General, 2001, 210(1/2): 103-109

[7]

LouisB., SubrahmanyamC. H., Kiwi-MinskerL., ViswanathanB., BuffatP. A., RenkenA.. Synthesis and characterization of MCM-41 coatings on stainless steel grids [J]. Catalysis Communications, 2002, 3(4): 159-163

[8]

YangK. S., ChoiJ. S., ChungJ. S.. Evaluation of wire-mesh honeycomb containing porous Al/Al2O3 layer for catalytic combustion of ethyl acetate in air [J]. Catalysis Today, 2004, 97(2/3): 159-165

[9]

SungkonoI. E., KameyamaH., KoyaT.. Development of catalytic combustion technology of VOC materials by anodic oxidation catalyst [J]. Applied Surface Science, 1997, 121/122: 425-428

[10]

GaoL. Z., Kiwi-MinskerL., RenkenA.. Growth of carbon nanotubes and microfibers over stainless steel mesh by cracking of methane [J]. Surface and Coatings Technology, 2008, 202(13): 3029-3042

[11]

ShanZ., van KootenW. E. J., OudshoornO. L., JansenJ. C., van BekkumH., van Den BleekC. M., CalisH. P. A.. Optimization of the preparation of binderless ZSM-5 coatings on stainless steel monoliths by in situ hydrothermal synthesis [J]. Microporous and Mesoporous Materials, 2000, 34(1): 81-91

[12]

Vander WalR. L., HallL. J.. Carbon nanotube synthesis upon stainless steel meshes [J]. Carbon, 2003, 41(4): 659-672

[13]

ZamaroJ. M., UllaM. A., MiroE. E.. Zeolite washcoating onto cordierite honeycomb reactors for environmental applications [J]. Chemical Engineering Journal, 2005, 106(1): 25-33

[14]

HaakR. P., SmithT., IntJ.. Surface treatment of AM355 stainless steel for adhesive bonding [J]. International Journal of Adhesion and Adhesives, 1983, 3(1): 15-23

[15]

ZhouY. K., ShenC. M., LiH. L.. Synthesis of high-ordered LiCoO2 nanowire arrays by AAO template [J]. Solid State Ionics, 2002, 146(1/2): 81-86

[16]

LiY., WangC.-w., ZhaoL.-r., LiuW.-min.. Photoluminescence properties of porous anodic aluminium oxide membranes formed in mixture of sulfuric and oxalic acid [J]. Journal of Physics D: Applied Physics, 2009, 42: 1-5

[17]

SigurdsonS., SundaramurthyV., DalaiA. K., AdjayeJ.. Effect of anodic alumina pore diameter variation on template-initiated synthesis of carbon nanotube catalyst supports [J]. Journal of Molecular Catalysis A: Chemical, 2009, 306(1/2): 23-32

[18]

Niquille-RothlisbergerA., PrinsR.. Hydrodesulfurization of 4, 6-dimethyldibenzothiophene and dibenzothiophene over alumina-supported Pt, Pd, and Pt-Pd catalysts [J]. Journal of Catalysis, 2006, 242(1): 207-216

[19]

JiangH., XuY., LiaoS.-j., YuD.-r., ChenH., LiX.-jun.. A remarkable synergic effect of water-soluble bimetallic catalyst in the hydrogenation of aromatic nitrocompounds [J]. Journal of Molecular Catalysis A: Chemical, 1999, 142(2): 147-152

[20]

Baldovino-MedranoV. G., EloyP., GaigneauxE. M., GiraldoS. A., CentenoA.. Development of the HYD route of hydrodesulfurization of dibenzothiophenes over Pd-Pt/λ-Al2O3 catalysts [J]. Journal of Catalysis, 2009, 267(2): 129-139

[21]

RadicN., GrbicB., Terlecki-baricevicA.. Kinetics of deep oxidation of n-hexane and toluene over Pt/Al2O3 catalysts Platinum crystallite size effect [J]. Applied Catalysis B: Environmental, 2004, 50(3): 153-159

[22]

GilA., VicenteM. A., LambertJ. F., GandiaL. M.. Platinum catalysts supported on Al-pillared clay application to the catalytic combustion of acetone and methyl-ethyl-ketone [J]. Catalysis Today, 2001, 68(1/2/3): 41-51

[23]

SekineY., TakamatsuH., AramakiS., IchishimaK., TakadaM., MatsukataM., KikuchiE.. Synergistic effect of Pt or Pd and perovskite oxide for water gas shift reaction [J]. Applied Catalysis A: General, 2009, 352(1/2): 214-222

[24]

ChouC. W., ChuS. J., ChiangH. J., HuangC. Y., LeeC. J., SheenS. R., PerngT. P., YehC. T.. Temperature-programmed reduction study on calcination of nano-palladium [J]. Journal of Physical Chemistry B, 2001, 105(38): 9113-9117

[25]

ZhangY.-w., ZhouY.-m., QiuA.-d., WangY., XuY., WuP. C.. Propane dehydrogenation on PtSn/ZSM-5 catalyst: Effect of tin as a promoter [J]. Catalysis Communications, 2006, 7(11): 860-866

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/