Negative differential resistance behavior in doped C82 molecular devices

Hui Xu , Shu-ting Jia , Ling-na Chen

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (2) : 299 -303.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (2) : 299 -303. DOI: 10.1007/s11771-012-1004-7
Article

Negative differential resistance behavior in doped C82 molecular devices

Author information +
History +
PDF

Abstract

By using the first-principle calculations and nonequilibrium Green functions method, the electronic transport properties of molecular devices constructed by C82, C80BN and C80N2 were studied. The results show that the electronic transport properties of molecular devices are affected by doped atoms. Negative differential resistance (NDR) behavior can be observed in certain bias regions for C82 and C80BN molecular devices but cannot be observed for C80N2 molecular device. A mechanism for the negative differential resistance behavior was suggested.

Keywords

electronic transport properties / negative differential resistance / first-principle / molecular device

Cite this article

Download citation ▾
Hui Xu, Shu-ting Jia, Ling-na Chen. Negative differential resistance behavior in doped C82 molecular devices. Journal of Central South University, 2012, 19(2): 299-303 DOI:10.1007/s11771-012-1004-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PalaciosJ. J.. Coulomb blockade in electron transport through a C60 molecule from first principles [J]. Physical Review B, 2005, 72(12): 125424-1-125424-6

[2]

AnY.-p., YangC.-l., WangM.-s., MaX.-g., WangD.-hua.. First-principles study of structure and quantum transport properties of C20 fullerene [J]. The Journal of Chemical Physics, 2009, 131(2): 024311-1-024311-6

[3]

OuyangF.-p., XuH., FanT.-jiao.. All-carbon nanoswitch based on C70 molecule: A first principles study [J]. Journal of Applied Physics, 2007, 102(6): 064501-1-064501-4

[4]

JornR., SeidemanT.. Competition between current-induced excitation and bath-induced decoherence in molecular junctions [J]. The Journal of Chemical Physics, 2009, 131(24): 244114-1-244114-16

[5]

GardenerJ. A., BriggsG. A. D., CastellM. R.. Scanning tunneling microscopy studies of C60 monolayers on Au(111) [J]. Physical Review B, 2009, 80(23): 235434-1-235434-9

[6]

TothS., QuintavalleD., NafradiB., KoreczL., ForroL., SimonF.. Enhanced thermal stability and spin-lattice relaxation rate of N@C60 inside carbon nanotubes [J]. Physical Review B, 2008, 77(21): 214409-1-214409-5

[7]

YangS.-y., YoonM., HickeC., ZhangZ.-y., WangE. G.. Electron transfer and localization in endohedral metallofullerenes: Ab initio density functional theory calculations [J]. Physical Review B, 2008, 78(11): 115435-1-115435-5

[8]

YangC. K.. Magnetic molecules made of nitrogen or boron-doped fullerenes [J]. Applied Physics Letters, 2008, 92(3): 033103-1-033103-3

[9]

RivelinoR., MalaspinaT., FiletiE. E.. Structure, stability, depolarized light scattering, and vibrational spectra of fullerenols from all-electron density-functional-theory calculations [J]. Physical Review A, 2009, 79(1): 013201-1-013201-10

[10]

WangK.-d., ZhaoJ., YangS.-f., ChenL., LiQ.-x., WangB., YangS.-h., YangJ.-l., HouJ. G., ZhuQ.-shi.. Unveiling metal-cage hybrid states in a single endohedral metallofullerene [J]. Physical Review Letters, 2003, 91(18): 185504-1-185504-4

[11]

LuJ., NagaseS., ReS.-y., ZhangX.-w., YuD.-p., ZhangJ., HanR.-shan.. Interplay of single-wall carbon nanotubes and encapsulated La@C82, La2@C80, and Sc3N@C80 [J]. Physical Review B, 2005, 71(23): 235417-1-235417-5

[12]

NishikawaT., KobayashiS., NakanwatariT., MitaniT., ShimodaT., KubozonoY., YamamotoG., IshiiH., NiwanoM., IwasaY.. Ambipolar operation of fullerene field-effect transistors by semiconductor/metal interface modification [J]. Journal of Applied Physics, 2005, 97(10): 104509-1-104509-5

[13]

FanZ.-q., ChenK.-q., WanQ., ZouB. S., DuanW.-h., ShuaiZ.. Theoretical investigation of the negative differential resistance in squashed C60 molecular device [J]. Applied Physics Letters, 2008, 92(26): 263304-1-263304-5

[14]

ZhangX.-j., LongM.-q., ChenK.-q., ShuaiZ., WanQ., ZouB. S., ZhangY.. Electronic transport properties in doped C60 molecular devices [J]. Applied Physics Letters, 2009, 94(7): 073503-1-073503-3

[15]

LiY. F., KanekoT., HatakeyamaR.. High-performance negative differential resistance behavior in fullerenes encapsulated double-walled carbon nanotubes [J]. Journal of Applied Physics, 2009, 106(12): 124316-1-124316-6

[16]

ChenJ.-s., XuL.-l., LinJ., GengY.-h., WangL.-x., MaD.-ge.. Negative differential resistance and multilevel memory effects in organic devices [J]. Semiconductor Science and Technology, 2006, 21(8): 1121-1124

[17]

SuZ. S., FungM. K., LeeC. S., LiW. L., LeeS. T.. Memory effect and negative differential resistance in tris-(8-hydroxy quinoline)-aluminum/bathocuproine bilayer devices [J]. Applied Physics Letters, 2008, 93(8): 083301-1-083301-3

[18]

DimitrakisP., NormandP., TsoukalasD., PearsonC., AhnJ. H., MabrookM. F., ZezeD. A., PettyM. C., KamtekarK. T., WangC.-s., BryceM. R., GreenM.. Electrical behavior of memory devices based on fluorene-containing organic thin films [J]. Journal of Applied Physics, 2008, 104(4): 044510-1-044510-11

[19]

McwhorterA. L., FoytA. G.. Bulk GaAs negative conductance amplifiers [J]. Applied Physics Letters, 1966, 9(8): 300-302

[20]

ChenJ., ReedM. A., RawlettA. M., TourJ. M.. Large on-off ratios and negative differential resistance in a molecular electronic device [J]. Science, 1999, 286(5444): 1550-1552

[21]

ChenL., HuZ.-p., ZhaoA.-d., WangB., LuoY., YangJ.-l., HouJ. G.. Mechanism for negative differential resistance in molecular electronic devices: Local orbital symmetry matching [J]. Physical Review Letters, 2007, 99(14): 146803-1-146803-4

[22]

LiX.-f., ChenK.-q., WangL.-l., LongM.-q., ZouB. S., ShuaiZ.. Effect of intertube interaction on the transport properties of a carbon double-nanotube device [J]. Journal of Applied Physics, 2007, 101(6): 064514-1-064514-4

[23]

CornilJ., KarzaziY., BredasJ. L.. Negative differential resistance in phenylene ethynylene oligomers [J]. Journal of the American Chemical Society, 2002, 124(14): 3516-3517

[24]

OuyangF.-p., XiaoJ., GuoR., ZhangH., XuH.. Transport properties of T-shaped and crossed junctions based on grapheme nanoribbons [J]. Nanotechnol, 2009, 20(5): 055202-1-055202-6

[25]

SahinH., SebgerR. T.. First-principles calculations of spin-dependent conductance of graphene flakes [J]. Physical Review B, 2008, 78(20): 205423-1-205423-4

[26]

YanJ.-y., ZhangP., SunB., LuH.-z., WangZ.-g., DuanS.-q., ZhaoX.-geng.. Quantum blockade and loop current induced by a single lattice defect in graphene nanoribbons [J]. Physical Review B, 2009, 79(11): 115403-1-115403-5

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/