Estimation of surface tension of organic compounds using quantitative structure-property relationship

Yi-min Dai , You-nian Liu , Xun Li , Zhong Cao , Zhi-ping Zhu , Dao-wu Yang

Journal of Central South University ›› 2012, Vol. 19 ›› Issue (1) : 93 -100.

PDF
Journal of Central South University ›› 2012, Vol. 19 ›› Issue (1) : 93 -100. DOI: 10.1007/s11771-012-0977-6
Article

Estimation of surface tension of organic compounds using quantitative structure-property relationship

Author information +
History +
PDF

Abstract

A novel quantitative structure-property relationship (QSPR) model for estimating the solution surface tension of 92 organic compounds at 20 °C was developed based on newly introduced atom-type topological indices. The data set contained non-polar and polar liquids, and saturated and unsaturated compounds. The regression analysis shows that excellent result is obtained with multiple linear regression. The predictive power of the proposed model was discussed using the leave-one-out (LOO) cross-validated (CV) method. The correlation coefficient (R) and the leave-one-out cross-validation correlation coefficient (RCV) of multiple linear regression model are 0.991 4 and 0.991 3, respectively. The new model gives the average absolute relative deviation of 1.81% for 92 substances. The result demonstrates that novel topological indices based on the equilibrium electro-negativity of atom and the relative bond length are useful model parameters for QSPR analysis of compounds.

Keywords

surface tension / quantitative structure-property relationship (QSPR) / topological indice / organic compound

Cite this article

Download citation ▾
Yi-min Dai, You-nian Liu, Xun Li, Zhong Cao, Zhi-ping Zhu, Dao-wu Yang. Estimation of surface tension of organic compounds using quantitative structure-property relationship. Journal of Central South University, 2012, 19(1): 93-100 DOI:10.1007/s11771-012-0977-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BortolottiM., BrugnaraM., Della VolpeC., ManiglioD., SiboniS.. Molecular connectivity methods for the characterization of surface energetics of liquids and polymers [J]. J Colloid Interface Sci, 2006, 296(1): 292-308

[2]

YangC.-s., ZhongC.-li.. A new model for prediction of surface tension of pure fluids [J]. Chinese J Chem Eng, 2004, 12: 85-91

[3]

EndersS., KahlH., WinkelmannJ.. Surface tension of the ternary system water plus acetone plus toluene [J]. J Chem Eng Data, 2007, 52(3): 1072-1079

[4]

WangJ., DuH.-y., LiuH.-x., YaoX.-j., HuZ.-d., FanB.-tao.. Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine [J]. Talanta, 2007, 73: 147-156

[5]

RenY.-y., LiuH.-x., YaoX.-j., LiuM.-c., HuZ.-d., FanB.-tao.. The accurate QSPR models for the prediction of nonionic surfactant cloud point [J]. J Colloid Interface Sci, 2006, 302: 669-672

[6]

DaiY.-m., HuangK.-l., LiX., CaoZ., ZhuZ.-p., YangD.-wu.. Simulation of 13C NMR chemical shifts of carbinol carbon atoms by using quantitative structure-spectrum relationships [J]. Journal of Central South University of Technology, 2011, 18(2): 323-340

[7]

ReidC. R., SherwoodT. K.The properties of gases and liquids [M], 1966, New York, McGraw-Hill

[8]

EgemenE., NirmalakhandanN., TrevizoC.. Prediction of surface tension of organic liquids using artificial neural networks [J]. Environ Sci Technol, 2000, 34: 2596-2600

[9]

StantonD. T., JursP. C.. Computer-assisted study of the relationship between molecular structure and surface tension of organic compounds [J]. J Chem Inf Comput Sci, 1992, 32: 109-115

[10]

KauffmanG. W., JursP. C.. Prediction of surface tension, viscosity, and thermal conductivity for common organic solvents using quantitative structure-property relationships [J]. J Chem Inf Comput Sci, 2001, 41: 408-418

[11]

GaoS., CaoC.-zhong.. Extending bond orbital-connection matrix method to the QSPR study of alkylbenzenes: Some thermochemical properties [J]. J Mol Struct: Theochem, 2006, 778: 5-13

[12]

WienerH.. Structural determination of paraffin boiling points [J]. J Am Chem Soc, 1947, 69: 17-20

[13]

MohajeriA., HemmateenejadB., MehdipourA., MiriR.. Modeling calcium channel antagonistic activity of dihydropyridine derivatives using QTMS indices analyzed by GA-PLS and PC-GA-PLS [J]. J Mol Graph Model, 2008, 26: 1057-1065

[14]

DaiY.-m., WenS.-n., NieC.-m., LiZ.-hai.. A novel quantum topological index and predicting physical-chemical properties of the lanthanide [J]. Chin J Inorg Chem, 2005, 21(8): 1015-1019

[15]

DaiY.-m., LiX., CaoZ., YangD.-w., HuangK.-long.. Modeling flash point scale of hydrocarbon by novel topological electro-negativity indices [J]. CIESC Journal, 2009, 60(10): 2420-2425

[16]

DaiY.-m., LiX., LiangB., CaoZ., YangD.-w., HuangK.-long.. Quantitative relationship between 13C nuclear magnetic resonance chemical shift and structural parameters of acyclic alcohol [J]. Chin J Anal Chem, 2009, 37(12): 1754-1758

[17]

WeastR.CRC handbook of chemistry and physics [M], 198970th edBoca Raton, FL, CRC Press

[18]

ZhouC.-y., ChuX., NieC.-ming.. Predicting thermodynamic properties with a novel semi-empirical topological descriptor and path numbers [J]. J Phys Chem B, 2007, 111: 10174-10179

[19]

JaperJ. J.. The surface tension of pure liquid compounds [J]. J Phys Chem Ref Data, 1972, 1: 841-1010

[20]

KatritzkyA. R., SlavovS. H., DobchevD. A., KarelsonM.. Rapid QSPR model development technique for prediction of vapor pressure of organic compounds [J]. Comput Chem Eng, 2007, 31: 1123-1130

[21]

EscobedoJ., MansooriG. A.. Surface tension prediction for pure fluids [J]. AIChE J, 1996, 42: 1425-1433

[22]

GolbraikhA., TropshaA.. Beware of q2 [J]. J Mol Graph Model, 2002, 20: 269-276

[23]

AgrawalV. K., BanoS., KhadikarP. V.. QSAR study on 5-Lipoxygenase inhibitors using distance-based topological indices [J]. Bioorg Med Chem, 2003, 11: 5519-5527

[24]

ChaterjeeS., HadiA. S., PriceB.Regression analysis by examples [M], 20003rd edWiley, New York: 21-50

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/