Application of micro/nanoscale thermal radiation to thermophotovoltaic system

Ai-hua Wang , Jiu-ju Cai

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 2176 -2184.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) :2176 -2184. DOI: 10.1007/s11771-011-0960-7
Article

Application of micro/nanoscale thermal radiation to thermophotovoltaic system

Author information +
History +
PDF

Abstract

Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently available TPV systems suffer from low conversion efficiency and low throughput. A viable solution to increase their efficiency is to apply micro/nanoscale radiation principles in the design of different components to utilize the characteristics of thermal radiation at small distances and in microstructures. Several critical issues are reviewed, such as photovoltaic effect, quantum efficiency and efficiency of TPV system. Emphasis is given to the development of wavelength-selective emitters and filters and the aspects of micro/nanoscale heat transfer. Recent progress, along with the challenges and opportunities for future development of TPV systems are also outlined.

Keywords

thermophotovoltaic system / micro/nanoscale radiation / quantum efficiency / emitter / filter / photon tunneling

Cite this article

Download citation ▾
Ai-hua Wang, Jiu-ju Cai. Application of micro/nanoscale thermal radiation to thermophotovoltaic system. Journal of Central South University, 2011, 18(6): 2176-2184 DOI:10.1007/s11771-011-0960-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DonaldL.Fundamentals of thermophotovoltaic energy conversion [M], 2007, Amsterdam, Elsevier Science: 134-147

[2]

MessengerR. A., VentreJ.Photovoltaic systems engineering [M], 2004, Boca Raton, CRC Press: 78-89

[3]

NelsonR. E.. A brief history of thermophotovoltaic development [J]. Semiconductor Science and Technology, 2003, 18(5): S141-S143

[4]

YangW. M., ChouS. K., ShuC., LiZ. W., XueH.. A prototype microthermophotovoltaic power generator [J]. Applied Physics Letters, 2004, 84(19): 3864-3866

[5]

YangW. M., ChouS. K., ShuC., XueH., LiZ. W., LiD. T., PanD. F.. Microscale combustion research for application to micro thermophotovoltaic systems [J]. Energy Conversion Management, 2003, 44(16): 2625-2634

[6]

YangW. M., SiawkiangC., ShuC., XueH., LiZ. W.. Effect of wall thickness of micro-combustor on the performance of micro-thermophotovoltaic power generators [J]. Sensors and Actuators, 2005, 119(2): 441-445

[7]

XueH., YangW. M., ChouS. K., ShuC., LiZ. W.. Microthermophotovoltaics power system for portable MEMS devices [J]. Microscale Thermophysics Engineering, 2005, 9(1): 85-97

[8]

CouttsT. J., GuazzoniG., LutherJ.. Thermophotovoltaic generation of electricity [C]. The Proceedings of Fifth Conference on Thermophotovoltaic Generation of Electricity, 2003, Melville, American Institute of Physics: 235-246

[9]

BiehsS. A., ReddigD., HolthausM.. Thermal radiation and near-field energy density of thin metallic films [J]. The European Physics Journal B, 2007, 55: 237-251

[10]

FuC. J., TanW. C.. Near-field radiative heat transfer between two plane surfaces with one having a dielectric coating [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2009, 110(12): 1027-1036

[11]

LarocheM., CarminatiR., GreffetJ. J.. Near-field thermophotovoltaic energy conversion [J]. Journal of Applied Physics, 2006, 100(6): 063704-063712

[12]

MaukM. G., AndreevV. M.. GaSb-related materials for TPV cells [J]. Semiconductor Science and Technology, 2003, 18(5): S191-S201

[13]

Gonzalez-CuevasJ. A., RefaatT. F., AbedinM. N., Elsayed-AliH. E.. Modeling of the temperature-dependant spectral response of In1xGaxSb infrared photodetectors [J]. Optical Engineering, 2006, 45(4): 044001-044013

[14]

RadziemskaE.. Effect of temperature on dark current characteristics of silicon solar cells and diodes [J]. International Journal of Energy Research, 2006, 30(2): 127-134

[15]

CouttsT. J., BennerJ. P.. Thermophotovoltaic generation of electricity [C]. The First NREL Conference on Thermophotovoltaic Generation of Electricity, 1994, Melville, American Institute of Physics: 219-225

[16]

DingesH. W., BurkhardH., LoschR., NickelH., SchlapW.. Refractive indexes of InAlAs and InGaAs/InP from 250nm to 1900nm determined by spectroscopic ellipsometry [J]. Applied Surface Science, 1992, 54: 477-481

[17]

CouttsT. J., AllmanC. S., BennerJ. P.. Thermophotovoltaic generation of electricity [C]. The Third NREL Conference, 1997, Melville, American Institute of Physics: 109-114

[18]

RenaudP., RaymondF., BensaidB., VerieC.. Influence of photon recycling on lifetime and diffusion-coefficient in GaAs [J]. Journal of Applied Physics, 1992, 71(4): 1907-1913

[19]

SzeS. M.Physics of semiconductor devices [M], 1981, New York, Wiley: 204-211

[20]

BennerJ. P., CouttsT. J., GinleyD. S.. Thermophotovoltaic generation of electricity [C]. The Second NREL Conference on Thermophotovoltaic Generation of Electricity, 1995, Melville, American Institute of Physics: 201-212

[21]

FahrenbruchA. L., BubeR. H.Fundamentals of solar cells: Photovoltaic solar energy conversion [M], 1983, New York, Academic Press: 156-159

[22]

GreeM. A.Solar cells: Operating principles, technology, and system applications [M], 1982, NJ, Prentice-Hall: 543-549

[23]

ZenkerM., HeinzelA., StollwreckG., FerberJ., LutherJ.. Efficiency and power density potential of combustion driven thermophotovoltaic systems using GaSb photovoltaic cells [J]. IEEE Electronic Devices, 2001, 48(2): 367-376

[24]

BaldasaroP. F., RaynoldsJ. E., CharacheG. W., DepoyD. M., BallingerC. T., DonovanT., BorregoJ. M.. Thermodynamic analysis of thermophotovoltaic efficiency and power density tradeoffs [J]. Journal of Applied Physics, 2001, 89(6): 3319-3327

[25]

DemichelisF., MinettimezzettiE., AgnelloM., TressoE.. Evaluation of thermophotovoltaic conversion efficiency [J]. Journal of Applied Physics, 1982, 53(12): 9098-9104

[26]

MahorterR. G., WernsmanB., ThomasR. M., SiergiejR. R.. Thermophotovoltaic system testing [J]. Semiconductor Science and Technology, 2003, 18(5): S232-S238

[27]

LicciulliA., DisoD., TorselloG., TundoS., MaffezzoliA., LomascoloM., MazzerM.. The challenge of high performance selective emitters for thermophotovoltaic applications [J]. Semiconductor Science and Technology, 2003, 18(5): S174-S183

[28]

TorselloG., LomascoloM., LicciulliA., DisoD., TundoS., MazzerM.. The origin of highly efficient selective emission in rare-earth oxides for thermophotovoltaic applications [J]. Nature Materials, 2004, 3(9): 632-637

[29]

ChubbD. L., WolfordD. S.. Dual layer selective emitter [J]. Applied Physics Letters, 2005, 87(14): 141907-141912

[30]

NarayanaswamyA., ChenG.. Thermal emission control with one-dimensional metallodielectric photonic crystals [J]. Physics Review B, 2004, 70(12): 125101-125109

[31]

ChenY. B., ZhangZ. M.. Design of tungsten complex gratings for thermophotovoltaic radiators [J]. Optical Communications, 2006, 269: 411-417

[32]

HeinzelA., BoernerV., GombertA., BlasiB., WittwerV., LutherJ.. Radiation filters and emitters for the NIR based on periodically structured metal surfaces [J]. Journal of Modern Optics, 2000, 47(13): 2399-2419

[33]

SaiH., KanamoriY., YugamiH.. High-temperature resistive surface grating for spectral control of thermal radiation [J]. Applied Physics Letters, 2003, 82(11): 1685-1687

[34]

SaiH., KanamoriY., YugamiH.. Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures [J]. Journal of Micromechanics and Microenergy, 2005, 15(9): S243-S249

[35]

BauerT., ForbesI., PenlingtonR., PearsallN.. Heat transfer modeling in the thermophotovoltaic cavities using glass media [J]. Solar Energy Materials and Solar Cells, 2005, 88: 257-268

[36]

FraasL. M., AveryJ. E., HuangH. X., MartinelliR. U.. Thermophotovoltaic system configurations and spectral control[J]. Semiconductor Science and Technology, 2003, 18(5): S165-S173

[37]

KiziltasG., VolakisJ. L., KikuchiN.. Design of a frequency selective structure with inhomogeneous substrates as a thermophotovoltaic filter [J]. IEEE T Antennas and Propagation, 2005, 53(7): 2282-2289

[38]

VigilO., RuizC. M., SeuretD., BermudezV., DieguezE.. Transparent conducting oxides as selective filters in thermophotovoltaic devices [J]. Journal of Physics: Condensed Matter, 2005, 17(41): 6377-6384

[39]

CelanovicI., O’sullivanF., IlakM., KassakianJ., PerreaultD.. Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications [J]. Optics Letter, 2004, 29(8): 863-865

[40]

O’sullivanF., CelanovicI., JovanovicN., KassakianJ.. Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications [J]. Journal of Applied Physics, 2005, 97(3): 033529-033537

[41]

FourspringP. M., DepoyD. M., RahmlowT. D., Lazo-WasemJ. E., GratrixE. J.. Optical coatings for thermophotovoltaic spectral control [J]. Applied Optics, 2006, 45(7): 1356-1358

[42]

GopinathA., CouttsT. J., LutherJ.. Thermophotovoltaic generation of electricity [C]. The Sixth Conference on Thermophotovoltaic Generation of Electricity, 2004, Melville, American Institute of Physics: 231-240

[43]

CockeramB. V., MeasuresD. P., MuellerA. J.. The development and testing of emissivity enhancement coatings for thermophotovoltaic (TPV) radiator applications [J]. Thin Solid Films, 1999, 356: 17-25

[44]

ChubbD. L., WolfordD. S.. Dual layer selective emitter [J]. Applied Physics Letters, 2005, 87(14): 141907-141916

[45]

MartinP. M., OlsenL. C., JohnstonJ. W., DepoyD. M.. Investigation of sputtered HfF4 films and application to interference filters for thermophotovoltaics [J]. Thin Solid Films, 2002, 420: 8-12

[46]

ZhangZ. M., FuC. J., ZhuQ. Z.. Optical and thermal radiative properties of semiconductors related to micro/nanotechnology [J]. Advanced Heat Transfer, 2003, 37: 179-296

[47]

LeeB. J., KhuuV. P., ZhangZ. M.. Partially coherent spectral radiative properties of dielectric thin films with rough surfaces [J]. Journal of Thermophysics Heat Transfer, 2005, 19: 360-366

[48]

FuK., HsuP. F., ZhangZ. M.. Unified analytical formulation of thin-film radiative properties including partial coherence [J]. Applied Optics, 2006, 45(4): 653-661

[49]

WhaleM. D., CravalhoE. G... Modeling and performance of microscale thermophotovoltaic energy conversion devices [J]. IEEE Transactions on Energy Conversion, 2002, 17(1): 130-142

[50]

NarayanaswamyA., ChenG.. Surface modes for near field thermophotovoltaics [J]. Applied Physics Letters, 2003, 82(20): 3544-3546

[51]

LarocheM., CarminatiR., GreffetJ. J.. Near-field thermo-photovoltaic energy conversion [J]. Journal of Applied Physics, 2006, 100(6): 063704-063711

[52]

ParkK., KingW. P.. Performance analysis of near-field thermophotovoltaic devices considering absorption distribution [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(2): 305-316

[53]

BsuS., ZhangZ. M.. Maximum energy transfer in near-field thermal radiation at nanometer distances [J]. Journal of Applied Physics, 2009, 105(9): 09353-09360

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/