Sound transducer calibration of ambulatory audiometric system utilizing delta learning rule

Kyeong-seop Kim , Seung-won Shin , Tae-ho Yoon , Sang-min Lee , Insung Lee , Keun ho Ryu

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 2009 -2014.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 2009 -2014. DOI: 10.1007/s11771-011-0935-8
Article

Sound transducer calibration of ambulatory audiometric system utilizing delta learning rule

Author information +
History +
PDF

Abstract

An efficient calibration algorithm for an ambulatory audiometric test system is proposed. This system utilizes a personal digital assistant (PDA) device to generate the correct sound pressure level (SPL) from an audiometric transducer such as an earphone. The calibrated sound intensities for an audio-logical examination can be obtained in terms of the sound pressure levels of pure-tonal sinusoidal signals in eight-banded frequency ranges (250, 500, 1 000, 2 000, 3 000, 4 000, 6 000 and 8 000 Hz), and with mapping of the input sound pressure levels by the weight coefficients that are tuned by the delta learning rule. With this scheme, the sound intensities, which evoke eight-banded sound pressure levels by 5 dB steps from a minimum of 25 dB to a maximum of 80 dB, can be generated without volume displacement. Consequently, these sound intensities can be utilized to accurately determine the hearing threshold of a subject in the ambulatory audiometric testing environment.

Keywords

calibration / audiometric system / pure-tonal sound / sound pressure level / hearing threshold / delta learning rule

Cite this article

Download citation ▾
Kyeong-seop Kim, Seung-won Shin, Tae-ho Yoon, Sang-min Lee, Insung Lee, Keun ho Ryu. Sound transducer calibration of ambulatory audiometric system utilizing delta learning rule. Journal of Central South University, 2011, 18(6): 2009-2014 DOI:10.1007/s11771-011-0935-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

NewsbyH. A., PopelkaG. R.Audiology [M], 1992, Englewood Cliffs, Prentice Hall: 126-174

[2]

DebonisD. A., DonohueC. R.Survey of audiology [M], 2004, Bosten, Pearson Education: 77-106

[3]

MargolisR. H., MorganD. E.. Automated pure-tine audiometry: An analysis of capacity, need, and benefit [J]. American Journal of Audiology, 2008, 17: 109-113

[4]

KhandpurR. S.Biomedical instrumentation, technology and applications [M], 2005, New York, McGraw-Hill: 463-485

[5]

GivensG. D., ElangovanS.. Internet application to tele-audiology-“nothin’ but net” [J]. American Journal of Audiology, 2003, 12: 59-65

[6]

YaoJ., WanY., GivensG. D.. Using web services to realize remote hearing assessment [J]. Journal of Clinical Monitoring and Computing, 2010, 24: 41-50

[7]

SwanepoelD. W., ClarkJ., KoekmoerD., HallJ. W.III, KrummM., FerrariD. V., McPhersonB., OlusanyaB. O., MarsM., RussoI., BarajasJ. J.. Telehealth in audiology: The need and potential to reach underserved communities [J]. International Journal of Audiology, 2010, 49: 195-202

[8]

GivensG. D., BlanarovichA., MurphyT., SimmonsS., BlachD., ElangovanS.. Internet-based tele-audiometry system for the assessment of hearing: a pilot study [J]. Telemedicine Journal and e-Health, 2003, 9(4): 375-378

[9]

KrummM.. Audiology telemedicine [J]. Journal of Telemedicine and Telecare, 2007, 13: 224-229

[10]

KrummM., RiberaJ., KlichR.. Providing basic hearing tests using remote computing technology [J]. Journal of Telemedicine and Telecare, 2007, 13: 406-410

[11]

KrummM., HuffmanT., DickK., KlichR.. Telemedicine for audiology screening of infants [J]. Journal of Telemedicine and Telecare, 2008, 14: 102-104

[12]

SwanepoelD. W., OlusanyaB. O., MarsM.. Hearing health-care delivery in sub-Saharan Africa-A role for tele-audiology [J]. Journal of Telemedicine and Telecare, 2010, 16: 53-56

[13]

SwanepoelD. W., KoekmoerD., ClarkJ.. Intercontinental hearing assessment — A study in tele-audiology [J]. Journal of Telemedicine and Telecare, 2010, 16: 248-252

[14]

NAKAMURA N. Development of mobile audiometric test system using mobile phones [C]// IEEE EMBS Asian-Pacific Conference. Kyoto, Japan: 2003: 356–357.

[15]

HanL. A., PoulsenT.. Equivalent threshold sound pressure levels for Sennheiser HDA 200 earphone and etymotic research ER-2 insert earphone in the frequency range 125 Hz to 16 kHz [J]. Scand Audiol, 1997, 22: 105-112

[16]

TorbenP.. Free-field correction values for interacoustics DD 45 supra-aural audiometric earphones [J]. International Journal of Audiology, 2011, 50(6): 361-366

[17]

RichterU., FedtkeT.. Reference zero for the calibration of audiometric equipment using ‘clicks’ as test signals [J]. International Journal of Audiology, 2005, 44: 478-487

[18]

RuizM., FeuereisenB., MachonD., RecueroM.. Factors contributing to the uncertainty in circumaural earphone calibration for audiometric test [J]. Applied Acoustics, 2005, 66(9): 1033-1048

[19]

ChoiJ. M., LeeH. B., ParkC. S., OhS. H., ParkK. S.. PC-based tele-audiometry [J]. Telemedicine and e-Health, 2007, 13(5): 501-508

[20]

LeeD. H., ChonK. M., LeeI. W., RoY. S., KimJ. D., KongS. K., ParkS. S., WangS. G.. Development of web-based digital air-conduction pure tone audiometer with automated masking [J]. Korean J Otorhinolaryngol-Head Neck Surg, 2007, 50: 860-868

[21]

ZHANG B, XU H, SUN Q S. HE L B, NIU F, BAI Y, YANG P. An automatic calibration system for frequency weighting functions of sound level meter [C]// Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation. Xi’an: 2010: 401–405.

[22]

KimY. T., LeeY. B., JhoM. J.. A fast automatic calibration system for a sound level meter in an anechoic room [J]. Applied Acoustics, 2003, 64: 459-470

[23]

FausettL.Fundamentals of neural networks [M], 1994, Upper Saddle River, Prentice Hall: 86-88

[24]

BishopC. M.Pattern Recognition and machine learning [M], 2006, Singapore, Springer: 250-251

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/