Modeling and motion control simulation of tendon based parallel manipulator translation mechanism for sensor based high value waste processing

Jiu Huang , T. Pretz , Zheng-fu Bian

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1953 -1961.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1953 -1961. DOI: 10.1007/s11771-011-0928-7
Article

Modeling and motion control simulation of tendon based parallel manipulator translation mechanism for sensor based high value waste processing

Author information +
History +
PDF

Abstract

A novel sorting system based on one degree of freedom (DOF) tendon based parallel manipulator (TBPM) for high value waste processing was presented and designed. In order to control the motion of loads, nonlinear state feed forward control algorithm in the tendon length coordinate was used. Considering the system redundancy and actuation behavior, algorithms of optimal tension distribution and forward kinematics were designed. Then, the simulation experiments of motion control were implemented. The results demonstrate that the proposed TBPM translation system performs robust capacities. It can transfer the loads 1 m away within 1.5 s. With further optimization, the translation duration can be further reduced to be about 1 s and the optimized translation is followed with 43.59 m/s2 maximum acceleration. The translation errors at the aim position remain below 0.4 mm.

Keywords

municipal solid waste incineration / tendon based parallel manipulator / sensor based sorting / motion control

Cite this article

Download citation ▾
Jiu Huang, T. Pretz, Zheng-fu Bian. Modeling and motion control simulation of tendon based parallel manipulator translation mechanism for sensor based high value waste processing. Journal of Central South University, 2011, 18(6): 1953-1961 DOI:10.1007/s11771-011-0928-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KillmannD., SchrrenbachT., PretzT.. Perspectives of sensor based sorting for the processing of solid waste material [C]. KÜHLE-WEIDEMEIER M. 2 International Tagung MBA und Sortieranlagen, 2007, Hannover, Cuvilier Verlag: 296-307

[2]

LiC.-t., HerbellJ. D.Modern treatment technologies of solid waste [M], 2007, Nanjing, Press of Southeast University

[3]

WanX., WangW., YeT.-m., GuoY.-w., GaoX.-bao.. A study on the chemical and mineralogical characterization of MSWI fly ash using a sequential extraction procedure [J]. Journal of Hazardous Material, 2006, 134(1/2/3): 197-201

[4]

ChangY.-H., ChenW. C., ChangN.-Bin.. Comparative evaluation of RDF and MSW incineration [J]. Journal of Hazardous Material, 1998, 58(1/2/3): 33-45

[5]

AutretE., BerthierF., LuszezanecA., NicolasF.. Incineration of municipal and assimilated wastes in France: Assessment of latest energy and material recovery performances [J]. Journal of Hazardous Material, 2007, 139(3): 569-574

[6]

RichersU.Abfallverbrennung in deutschland-entwicklungen und kapazitäten (KIT scientific report; 7560) [R], 2010, Karlsruhe, Karlsruhe Institute of Technology

[7]

YaoJ., LiW.-b., KongQ.-n., WuY.-y., HeR., ShenD.-Sheng.. Content, mobility and transfer behavior of heavy metals in MSWI bottom ash in Zhejiang Province, China [J]. Fuel, 2010, 89(3): 616-622

[8]

PretzT., Meier-kortwigJ.. Reprocessing of waste incineration ashes with special regard to metal recovery [J]. Aufbereitungs-Technik/Mineral Processing, 2000, 41(3): 124-131

[9]

ShenH.-t., ForssbergE.. An overview of recovery of metals from slags [J]. Waste Management, 2003, 23(10): 933-949

[10]

López-DelgadA., PefiaC., LÓPEZV., LÓPEZF. A.. Quality of ferrous scrap from MSW incinerators: A case study of spain [J]. Resources Conservation and Recycling, 2003, 40(1): 39-51

[11]

KoyanakaS., KobayashiK.. Automatic sorting of lightweight metal scrap by sensing apparent density and three-dimensional shape [J]. Resources Conservation and Recycling, 2010, 54(9): 571-578

[12]

GuidiG., RussoM., MagrassiG., BordegoniM.. Performance evaluation of triangulation based range sensors [J]. Sensors, 2010, 10(8): 7192-7215

[13]

AnchiniR., LiguoriC., PacielloV., PaolilloA.. A Comparison between stereo-vision techniques for the reconstruction of 3D coordinates of objects [J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(5): 1459-1466

[14]

SantolariaJ., GuillomíaD., CajalC., AlbajezJ. A., AguilarJ. J.. Modeling and calibration technique of laser triangulation sensors for integration in robot arms and articulated arm coordinate measuring machines [J]. Sensors, 2009, 9(9): 7374-7396

[15]

FangS.-q., FranitzaD., TorloM., BekesF., HillerM.. Motion control of a tendon-based parallel manipulator using optimal tension distribution [J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(3): 561-568

[16]

HillerM., FangS.-q., MielczarekS., VerhoevenR., FranitzaD.. Design, analysis and realization of tendon-based parallel manipulators [J]. Mechanism and Machine Theory, 2005, 40(4): 429-445

[17]

MorizonoT., KurahashiK., KawamuraS.. Analysis and control of a force display system driven by parallel wire mechanism [J]. Robotica, 1998, 16(5): 551-563

[18]

VerhoevenR., HillerM., TadokoroS.LenarčičJ., HustyM. L.. Workspace, stiffness, singularities and classification of tendon-driven Stewart platforms [C]. The 6th International Symposium on Advances in Robot Kinematics, 1998, Strobl, Kluwer Academic Publisher: 105-114

[19]

HuangJ., HillerM., FangS.-qing.. Simulation modeling of the motion control of a two degree of freedom, tendon based, parallel manipulator in operational space using MATLAB [J]. Journal of China University of Mining Technology, 2007, 17(2): 179-183

[20]

MingA.-g., HiguchiT.. Study on multiple degree-of-freedom positioning mechanism using wires: Part 1. Concept, design and control [J]. International Journal of Japan Society for Precision Engineering, 1994, 28(2): 131-138

[21]

GallinaP., RossiA., WilliamsR. L.II. Planar cable-direct-driven robots, Part II: Dynamics and control [C]. ASME. DECT2001 ASME Design Engineering Technical Conference, 2001, Pittsburgh, ASME Publisher: 1241-1247

[22]

PartikhP. J., LamS. S. Y.. A hybrid strategy to solve the forward kinematics problem in parallel manipulators [J]. IEEE/ASME Transactions on Robotics, 2005, 21(1): 18-25

[23]

YangC.-f., ZhengS.-t., JinJ., ZhuS.-b., HanJ.-wei.. Forward kinematics analysis of parallel manipulator using modified global Newton-Raphson method [J]. Journal of Central South University of Technology, 2010, 17(6): 1264-1270

[24]

HillerM., SchneiderM.. Modeling, simulation and control of flexible manipulators [J]. European Journal of Mechanics, 1997, 16(1): 127-150

[25]

KatsuhikoO.Modern control engineering [M], 20024th EdUpper Saddle River, Press of Prentice Hall

[26]

KinoH., CheahC. C., YabeS., KawamuraS., ArimotoS.. A motion control scheme in task oriented coordinates and its robustness for parallel wire driven system [J]. Journal of the Robotics Society of Japan, 2000, 18(3): 411-418

[27]

KawamuraS., KinoH., WonC.. High speed manipulation by using parallel cable-driven robots [J]. Robotica, 2000, 18(1): 13-21

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/