Lower fuel consumption model and air-flow segregation feeding system for sintering

Yuan Jiang , Zhu-cheng Huang , Bin Xu , Tao Jiang

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1917 -1923.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1917 -1923. DOI: 10.1007/s11771-011-0923-z
Article

Lower fuel consumption model and air-flow segregation feeding system for sintering

Author information +
History +
PDF

Abstract

In order to utilize the spontaneous accumulation of heat (SAH) reasonably and obtain the high quality sinter with low energy consumption, a lower fuel consumption modeling based on raw materials of a certain steel works was built. An air-flow segregation feeding (ASF) experimental equipment was designed to simulate strand feeding process and calculate the lower fuel consumption quantity. Compared with baseline test, the ASF experimental equipment was adopted. The results of sinter pot tests show that the solid fuel consumption is lower than that in baseline test, which is decreased by 5.8%. Meanwhile, other sinter indexes, such as pan yeild, tumbler strength and strand productivity are improved. The mineralogical examination indicates that the mineral compositions and micostructures are improved in sinter.

Keywords

fuel consumption / spontaneous accumulation of heat / air-flow segregation feeding / sinter

Cite this article

Download citation ▾
Yuan Jiang, Zhu-cheng Huang, Bin Xu, Tao Jiang. Lower fuel consumption model and air-flow segregation feeding system for sintering. Journal of Central South University, 2011, 18(6): 1917-1923 DOI:10.1007/s11771-011-0923-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YangW., ChoiS., ChoiE. S., RiD. W., KimS.. Combustion characteristics in an iron ore sintering bed-evaluation of fuel substitution [J]. Combustion and Flame, 2006, 145(3): 447-463

[2]

HuangZ.-c., JiangY., MaoX.-m., XuB., GuoY.-f., JiangTao.. Fuel appropriate distribution in iron ore sintering [J]. J Cent South Univ: Science and Technology, 2006, 37(5): 884-890

[3]

JIANG Yuan. The study of fue appropriate distribution in iron ore sintering [D]. Changsha: Central South University, 2006: 21–42. (in Chinese)

[4]

JangJ. Y., ChiuY. W.. 3-D Transient conjugated heat transfer and fluid flow analysis for the cooling process of sintered bed [J]. Applied Thermal Engineering., 2009, 29(14/15): 2895-2903

[5]

FormosoA.. The improvement of measuring methods of moisture and volatile matter with coke breeze in sintering [J]. Sintering and Pelletizing, 1995, 20(4): 32-37

[6]

Fernandez LlorenteM. J., Escalada CuadradoR., Murillo LaplazaJ. M., Carrasco GarciaJ. E.. Combustion in bubbling fluidised bed with bed material of limestone to reduce the biomass ash agglomeration and sintering [J]. Fuel, 2006, 85(14/15): 2081-2092

[7]

FuJ.-y., JiangT., ZhuD.-qing.Sintering and pelletizing [M], 1996, Changsha, Central South University of Technology Press: 14-28

[8]

YinR.-m., FanJ.-l., LiuXun.. Preparation and sintering of nano Fe coated Si3N4 composite powders [J]. Journal of Central South University of Technology, 2009, 16(2): 0184-0189

[9]

KnoykoA. K.. The study of heat accumulation in the sinter ore [J]. Cmaib, 1979, 4(3): 245-247

[10]

ZuoT.-jun.. Consideration on the granulation and the bed-permeability model of sinter raw materials [C]. Tet su-to-Hagane, 1982, 68(15): 2174-2181

[11]

KanjilalP. P., RoseE.. Application of adaptive prediction and control methods for improved operation of the sintering process [J]. Ironmaking and Steelmaking, 1986, 13(6): 289-293

[12]

PatissonF., BellotJ. P., AblitaerD.. Mathematical modeling of iron ore sintering process [J]. Ironmaking and Steelmaking, 1999, 18(2): 89-95

[13]

ZhouZ., ZhuH., YuA., WrightB., PinsonD., ZulliP.. Discrete particle simulation of solid flow in a model blast furnace [J]. ISIJ Int, 2005, 45(12): 1828-1837

[14]

ChoK., BiswasP.. A geometrical sintering model (GSM) to predict surface area change [J]. Aerosol Science, 2006, 37: 1378-1387

[15]

HutchinsonR. G., FleckN. A., CocksA. C. F.. A sintering model for thermal barrier coatings [J]. Acta Materiallia, 2006, 54(5): 1297-1306

[16]

BartelsM., LinW., NijenhuisJ., KapteijnF., VanO. J.. Agglomeration in fluidized beds at high temperatures: Mechanisms, detection and prevention [J]. Prog Energ Combust Sci, 2008, 34(5): 633-666

[17]

YangS. C.. Density effect on mixing and segregation processes in a vibrated binary granular mixture [J]. Powder Technol, 2006, 164(2): 65-74

[18]

TangP., PuriV. M.. An innovative device for quantification of percolation and sieving segregation patterns single component and multiple size fractions [J]. Part Sci Technol, 2005, 23(4): 335-350

[19]

KetterhagenW. R., CurtisJ. S., WassgreC. R., HancockB. C.. Modeling granular segregation in flow from quasi-three-dimensional wedge-shaped hoppers [J]. Power Technology, 2008, 179(3): 126-143

[20]

GuoY., WuC. Y., KafuiK. D., ThorntonC.. Numerical analysis of density-induced segregation during die filling [J]. Power Technology, 2009, 197(1/2): 111-119

[21]

ShiQ., SunG., HouM., LuK.. Density-driven segregation in vertically vibrated binary granular mixtures [J]. Phys Rev E, 2007, 75(06): 1302-1305

[22]

KetterhagenW. R., CurtisJ. S., WassgrenC. R., KongA., NarayanP. J., HancockB. C.. Granular segregation in discharging cylindrical hoppers: A discrete element and experimental study [J]. Chem Eng Sci, 2007, 62(22): 6423-6439

[23]

ZiganS., ThorpeR. B., TuzunU., EnstadG. G., BattistinF.. Theoretical and experimental testing of a scaling rule for air current segregation of alumina powder in cylindrical silos [J]. Powder Technol, 2008, 183(1): 133-145

[24]

KetterhagenW. R., CurtisJ. S., WassgreC. R.. Stress results from two-dimensional granular shear flow simulations using various collision models [J]. Phys Rev, E., 2005, 71(06): 3307-3317

[25]

WuC. Y., CockA. C. F.. Numerical and experimental investigations of the flow of powder into a confined space [J]. Mech Mater, 2006, 38(4): 304-324

[26]

VenkataramanaR., GuptaS. S., KapurP. C.. A combined model for granule size distribution and cold bed permeability in the wet stage of iron ore sintering process [J]. Int J Miner Process, 1999, 57(1): 43-58

[27]

ChangL.-liang.The investigation on the fluid mechanics principle of air-blow feeding and the technological development [D], 2007, Changsha, Central South University: 30-39

[28]

ChangL.-l., XuB., JiangTao.. Research of air-flow feeding in sinter [J]. Mining and Metallurgical Engineering, 2007, 27(2): 54-57

[29]

SchneiderL. C. R., SinkaI. C., CocksA. C. F.. Characterisation of the flow behaviour of pharmaceutical powders using a model die-shoe filling system [J]. Powder Technol, 2007, 243(1): 59-71

AI Summary AI Mindmap
PDF

203

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/