Preparation of nano-structured Ag solid materials and application to surface-enhanced Raman scattering

Zao Yi , Yan Chen , Shan-jun Chen , Xiu-lan Tan , Gao Niu , Jiang-shan Luo , Yong-jian Tang , You-gen Yi

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1877 -1882.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1877 -1882. DOI: 10.1007/s11771-011-0917-x
Article

Preparation of nano-structured Ag solid materials and application to surface-enhanced Raman scattering

Author information +
History +
PDF

Abstract

Silver nano-particles with average diameter of about 60 nm were compacted in a high-strength mold under different pressures at 523 K to produce nano-structured Ag solid materials. The structure and characteristic of the nano-structured Ag solid materials (NSS-Ag) were studied using X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectrometer. The NSS-Ag could be used as highly efficient surface-enhanced Raman scattering (SERS) active substrates. The common probe molecules Rhodamine 6G (R6G, 1×10−10 mol/L) were used to test the SERS activity on these substrates at very low concentrations. It is found that the SERS enhancement ability is dependent on the density of NSS-Ag. When the relative density of NSS-Ag is 83.87%, the materials reveal great SERS signal.

Keywords

nano-structured Ag solid material / flow-levitation method / relative density / Rhodamine 6G / surface-enhanced Raman scattering

Cite this article

Download citation ▾
Zao Yi, Yan Chen, Shan-jun Chen, Xiu-lan Tan, Gao Niu, Jiang-shan Luo, Yong-jian Tang, You-gen Yi. Preparation of nano-structured Ag solid materials and application to surface-enhanced Raman scattering. Journal of Central South University, 2011, 18(6): 1877-1882 DOI:10.1007/s11771-011-0917-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhangZ. L., YinY. F., JiangJ. W., MoetY. J.. Single molecule detection of 4-dimethylaminoazobenzene by surface-enhanced Raman spectroscopy [J]. Journal of Molecular Structure, 2009, 920(1/2/3): 297-300

[2]

OatesT. W. H., SugimeH., NodaS.. Combinatorial surface-enhanced Raman spectroscopy and spectroscopic ellipsometry of silver island films [J]. J Phys Chem C, 2009, 113(12): 4820-4828

[3]

DenisP., TanS. L., MelekE., HenryD., SvetlanaS.. In situ SERS study of Rhodamine 6G adsorbed on individually immobilized Ag nanoparticles [J]. Journal of Raman Spectroscopy, 2006, 37(7): 762-770

[4]

JeongM. B., SeungJ. L., MartinM.. Polarized surface-enhanced Raman spectroscopy from molecules adsorbed in nano-gaps produced by electromigration in silver nanowires [J]. Nano Lett, 2009, 9(2): 672-676

[5]

JamesA. H., SilviaP. C., HidehoO., HiroshiF., JohanH., HiroshiU.. Subdiffraction limited, remote excitation of surface enhanced Raman scattering[J]. Nano Lett, 2009, 9(3): 995-1001

[6]

EricD. D., NathanH. M., StephenK. D., EricM.. Femtosecond laser-nanostructured substrates for surface-enhanced Raman scattering [J]. Langmuir, 2009, 25(3): 1790-1794

[7]

LiuG. Q., CaiW. P., LiangC. H.. Trapeziform Ag nanosheet arrays induced by electrochemical deposition on Au-coated substrate [J]. Cryst Growth Des, 2008, 8(6): 2748-2752

[8]

ChaoY. W., ZhouQ., LiY., YanY. R., WuY., ZhengJ. W.. Potential dependent surface-enhanced Raman scattering of 4-mercaptopyridine on electrochemically roughened silver electrodes [J]. J Phys Chem C, 2007, 111(45): 16990-16995

[9]

SunL. L., SongY. H., WangL., GuoC. L., SunY. J., LiuZ. L., LiZ.. Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection [J]. J Phys Chem C, 2008, 112(5): 1415-1422

[10]

TantraR., BrownR. J. C., MiltonM. J. T.. Strategy to improve the reproducibility of colloidal SERS [J]. Journal of Raman Spectroscopy, 2007, 38(11): 1469-1479

[11]

LiC. M., LeiiH., TangY. J., LuoJ. S., LiuW., ChenZ. M.. Production of copper nanoparticles by the flow-levitation method [J]. Nanotechnology, 2004, 15(4): 1866-1869

[12]

ChuG., LiuW., TangY. J., YangT. Z.. Properties of nanocrystalline copper prepared by vacuum-warm-compaction method [J]. Trans Nonferrous Met Soc China, 2009, 19(2): 394-398

[13]

LiuW., YangT. Z., TangY. J., ChuG., LuoJ. S.. Synthesis and properties of nanocrystalline nonferrous metals prepared by flow-levitation-molding method [J]. Trans Nonferrous Met Soc China, 2007, 17(4): 1347-1351

[14]

GrochalaW., KudelskiA., BukowskaJ.. Anion-induced charge-transfer enhancement in SEES and SERRS spectra of rhodamine 6G on a silver electrode: How important is it? [J]. J Raman Spectrosc, 1998, 29(8): 681-685

[15]

KeatingC. D., KovaleskiK. K., NatanM. J.. Heightened electromagnetic fields between metal nanoparticles: Surface enhanced Raman scattering from metal-cytochrome c-metal sandwiches [J]. J Phys Chem B, 1998, 102(8): 9414-9425

[16]

GuptaR., WeimerW. A.. High enhancement factor gold films for surface enhanced Raman spectroscopy [J]. Chem Phys Lett, 2003, 374(3): 302-306

[17]

NieS., EmoryS. R.. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science, 1997, 275(4): 1102-1106

[18]

WeiG., ZhouH. L., LiuZ. G., LiZ.. A simple method for the preparation of ultrahigh sensitivity surface enhanced Raman scattering (SERS) active substrate [J]. Applied Surface Science, 2005, 240(1): 260-267

[19]

HildebrandtP., StockburgerM.. Surface-enhanced resonance Raman-spectroscopy of rhodamine-6g adsorbed on colloidal silver [J]. J Phys Chem, 1984, 88(6): 5935-5939

[20]

WilliamE. D., NieS.. Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement [J]. J Phys Chem B, 2002, 106(1): 311-317

AI Summary AI Mindmap
PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/