Preparation of basic magnesium carbonate and its thermal decomposition kinetics in air

Xin-wei Liu , Ya-li Feng , Hao-ran Li

Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1865 -1870.

PDF
Journal of Central South University ›› 2011, Vol. 18 ›› Issue (6) : 1865 -1870. DOI: 10.1007/s11771-011-0915-z
Article

Preparation of basic magnesium carbonate and its thermal decomposition kinetics in air

Author information +
History +
PDF

Abstract

The thermal decomposition process of basic magnesium carbonate was investigated. Firstly, Basic magnesium carbonate was prepared from magnesite, and the characteristics of the product were detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Subsequently, the thermal decomposition process of basic magnesium carbonate in air was studied by thermogravimetry-differential thermogravimetry (TG-DTG). The results of XRD confirm that the chemical composition of basic magnesium carbonate is 4MgCO3·Mg(OH)2·4H2O. And the SEM images show that the sample is in sheet structure, with a diameter of 0.1–1 μm. The TG-DTG results demonstrate that there are two steps in the thermal decomposition process of basic magnesium carbonate. The apparent activation energies (E) were calculated by Flynn-Wall-Ozawa method. It is obtained from Coats-Redfern’s equation and Malek method that the mechanism functions of the two decomposition stages are D3 and A1.5, respectively. And then, the kinetic equations of the two steps were deduced as well.

Keywords

basic magnesium carbonate / TG-DTG / thermal decomposition / kinetics / mechanism function

Cite this article

Download citation ▾
Xin-wei Liu, Ya-li Feng, Hao-ran Li. Preparation of basic magnesium carbonate and its thermal decomposition kinetics in air. Journal of Central South University, 2011, 18(6): 1865-1870 DOI:10.1007/s11771-011-0915-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TuJ., XuW.-sheng.. New technology of producing basic magnesium carbonate from dolomite by pressurized carbonation [J]. Non-Metallic Mines, 2010, 33(1): 45-48

[2]

HaoZ.-h., DuF.-lin.. Synthesis of basic magnesium carbonate microrods with a “house of cards” surface structure using rod-like particle template [J]. Journal of Physics and Chemistry of Solids, 2009, 70(2): 401-404

[3]

LaoutidF., GaudonP., TaulemesseJ. M., Lopez CuestaJ. M., VelascoJ. I., PiechaczykA.. Study of hydromagnesite and magnesium hydroxide based fire retardant systems for ethylene-vinyl acetate containing organo-modified montmorillonite [J]. Polymer Degradation and Stability, 2006, 91(12): 3074-3082

[4]

KhanN., DollinoreD., AlexanderK., WilburnF. W.. The origin of the exothermic peak in the thermal decomposition of basic magnesium carbonate [J]. Thermochimica Acia, 2001, 367/368(3): 321-333

[5]

JinH.-j., LiY.-h., RenB.-z., KongH.-p., LuoT.-l., LiuG.-ji.. Thermal decomposition of SnSO4 in catalyst preparation [J]. Journal of Chemical Industry and Engineering, 2008, 59(4): 917-919

[6]

QuH.-q., WuW.-h., JiaoY.-h., XuJ.-zhong.. ZnO and metal hydroxides as flame-retardants and smoke suppressants for flexible poly (vinyl chloride) [J]. Journal of Chemical Industry and Engineering, 2006, 57(5): 1259-1263

[7]

HaoZ.-h., PanJ., DuF.-lin.. Synthesis of basic magnesium carbonate microrods with a surface of “house of cards” structure [J]. Materials Letters, 2009, 63(12): 985-988

[8]

NiuS.-l., HanK.-h., LuC.-m., SunR.-yue.. Thermogravimetric analysis of the relationship among calcium magnesium acetate, calcium acetate and magnesium acetate [J]. Applied Energy, 2010, 87(7): 2237-2242

[9]

Al-Othman AsmaA., Al-FarhanK., Mahfouz RefaatM.. Kinetics analysis of nonisothermal decomposition of (Mg5(CO3)4(OH)2·4H2O/5Cr2O3) crystalline mixture [J]. Journal of King Saud University (Science), 2009, 21: 133-143

[10]

CongC.-j., LuoS.-t., TaoY.-t., ZhangL.-ke.. Kinetics of thermal decomposition of ZnAc2·H2O in air atmosphere [J]. Chemical Journal of Chinese University, 2005, 26(12): 2327-2330

[11]

ZhengH.-x., LiaoX.-s., WangQ., LiJing.. TG kinetics of decomposition of magnesite power and its pellet [J]. Journal of University of Science and Technology Liaoning, 2008, 31(1): 29-31

[12]

DemirF., DonmezB., OkerH., SevimF.. Calcination kinetic of magnesite from the thermogravimetric data [J]. Institution of Chemical Engineers, 2003, 81(3): 618-622

[13]

LuC.-b., SongW.-l., LinW.-gang.. Kinetics of biomass catalytic pyrolysis [J]. Biotechnology Advances, 2009, 27(5): 583-587

[14]

SamtainM., DollimoreD., AlexanderK. S.. Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetics parameters [J]. Thermochimica Acta, 2002, 392/393(15): 135-145

[15]

NingZ.-q., ZhaiY.-c., SunL.-qin.. Study on the thermal decomposition kinetics of magnesium hydroxide [J]. Journal of Molecular Science, 2009, 25(1): 27-30

[16]

ZhengY., ChenX.-h., ZhouY.-b., ZhengC.-guang.. The decomposition mechanism of CaCO3 and its kinetics parameters [J]. Journal of Huazhong University of Science and Technology: Nature Science Edition, 2002, 32(12): 86-88

[17]

ZhangB.-s., LiuJ.-z., ZhouJ.-h., FengZ.-g., QinK.-fa.. Experimental study on the impaction of particle size to limestone decomposition kinetics by thermogravimetry [J]. Proceedings of the CSEE, 2010, 30(2): 51-55

[18]

WangS.-j., LuJ.-d., ZhouH., HuZ.-j., ZhangB.-ting.. Kinetics model study on thermal decomposition of limestone particles [J]. Journal of Engineering Thermophysics, 2003, 24(4): 699-702

[19]

HuR.-z., ShiQ.-zhen.Thermal analysis kinetics [M], 2001, Beijing, Science Press: 125

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/